Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low levels of physical activity (PA) and sleep disruption are commonly seen in older adult inpatients and are associated with poor health outcomes. Wearable sensors allow for objective continuous monitoring; however, there is no consensus as to how wearable sensors should be implemented. This review aimed to provide an overview of the use of wearable sensors in older adult inpatient populations, including models used, body placement and outcome measures. Five databases were searched; 89 articles met inclusion criteria. We found that studies used heterogenous methods, including a variety of sensor models, placement and outcome measures. Most studies reported the use of only one sensor, with either the wrist or thigh being the preferred location in PA studies and the wrist for sleep outcomes. The reported PA measures can be mostly characterised as the frequency and duration of PA (Volume) with fewer measures relating to intensity (rate of magnitude) and pattern of activity (distribution per day/week). Sleep and circadian rhythm measures were reported less frequently with a limited number of studies providing both physical activity and sleep/circadian rhythm outcomes concurrently. This review provides recommendations for future research in older adult inpatient populations. With protocols of best practice, wearable sensors could facilitate the monitoring of inpatient recovery and provide measures to inform participant stratification and establish common objective endpoints across clinical trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222486PMC
http://dx.doi.org/10.3390/s23104881DOI Listing

Publication Analysis

Top Keywords

wearable sensors
20
older adult
16
physical activity
12
activity sleep
8
adult inpatients
8
adult inpatient
8
inpatient populations
8
placement outcome
8
outcome measures
8
measures
6

Similar Publications

Innovative technology allows for personalization of stimulation frequency in dual-site deep brain stimulation (DBS), offering promise for challenging symptoms in advanced Parkinson's disease (PD), particularly freezing of gait (FoG). Early results suggest that combining standard subthalamic nucleus (STN) stimulation with substantia nigra pars reticulata (SNr) stimulation may improve FoG outcomes. However, patient response and the optimal SNr stimulation frequency vary.

View Article and Find Full Text PDF

Multi-component collaborative design yields robust hydrogel sensors with superior environmental adaptability for machine learning-assisted gesture recognition.

J Colloid Interface Sci

September 2025

Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China. Electronic address:

Developing high-performance wearable flexible sensors that can adapt well to complex environments has become a hotspot. Herein, a polyvinyl alcohol based composite hydrogel sensor with high mechanical strength, desirable frost/swelling resistance, and highly sensitive sensing performance was proposed by a multi-component collaborative design strategy. Meanwhile, an intelligent gesture recognition system was established by combining machine learning algorithm.

View Article and Find Full Text PDF

Artificial intelligence (AI) is transforming many fields, including healthcare and medicine. In biomarker discovery, AI algorithms have had a profound impact, thanks to their ability to derive insights from complex high-dimensional datasets and integrate multi-modal datatypes (such as omics, electronic health records, imaging or sensor and wearable data). However, despite the proliferation of AI-powered biomarkers, significant hurdles still remain in translating them to the clinic and driving adoption, including lack of population diversity, difficulties accessing harmonised data, costly and time-consuming clinical studies, evolving AI regulatory frameworks and absence of scalable diagnostic infrastructure.

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF