98%
921
2 minutes
20
Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which in addition to DA, glutamate or GABA are also released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. An emerging literature suggests that neuroligins, trans-synaptic cell adhesion molecules, regulate both DA neuron connectivity and neurotransmission. However, the contribution of their major interaction partners, neurexins (Nrxns), is unexplored. Here, we tested the hypothesis that Nrxns regulate DA neuron neurotransmission. Mice with conditional deletion of all Nrxns in DA neurons (DAT::NrxnsKO) exhibited normal basic motor functions. However, they showed an impaired locomotor response to the psychostimulant amphetamine. In line with an alteration in DA neurotransmission, decreased levels of the membrane DA transporter (DAT) and increased levels of the vesicular monoamine transporter (VMAT2) were detected in the striatum of DAT::NrxnsKO mice, along with reduced activity-dependent DA release. Strikingly, electrophysiological recordings revealed an increase of GABA co-release from DA neuron axons in the striatum of these mice. Together, these findings suggest that Nrxns act as regulators of the functional connectivity of DA neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409506 | PMC |
http://dx.doi.org/10.7554/eLife.87902 | DOI Listing |
Mol Psychiatry
September 2025
Aix-Marseille Univ, CNRS, CRPN, UMR7077, Marseille, France.
Repetitive behaviors are cardinal features of many brain disorders, including autism spectrum disorder (ASD). We previously associated dysfunction of striatal cholinergic interneurons (SCINs) with repetitive behaviors in a mouse model based on conditional deletion of the ASD-related gene Tshz3 in cholinergic neurons (Chat-cKO). Here, we provide evidence linking SCIN abnormalities to the unique organization of the striatum into striosome and matrix compartments, whose imbalances are implicated in several pathological conditions.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
September 2025
West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China. Electronic address:
Background & Aims: Suppressing toxic Ca accumulation in pancreatic acinar cells (PACs) is the central therapeutic strategy of acute pancreatitis (AP). Store-operated Ca entry (SOCE) represents an important mechanism promoting Ca overload, which remains incompletely understood in AP. Transient receptor potential vanilloid 6 (TRPV6) is an ion channel highly selective to Ca, and its role in PACs or AP onset remains largely unknown.
View Article and Find Full Text PDFDevelopment
September 2025
Regenerative Medicine Program, Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada.
During development, neural progenitor cells modify their output over time to produce different types of neurons and glia in chronological sequences. Epigenetic processes have been shown to regulate neural progenitor potential, but the underlying mechanisms are not well understood. Here, we generated retina-specific conditional knockouts (cKOs) in the key nucleosome remodeller Chd4.
View Article and Find Full Text PDFMol Cell Endocrinol
September 2025
Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
RNA-binding proteins (RBPs) are critical regulators of post-transcriptional gene expression and RNA processing during mammalian oocyte development. SERPINE1 mRNA-binding protein 1 (SERBP1), a conserved RNA-binding protein (RBP), exhibits prominent expression in the female reproductive system and throughout oogenesis. Conditional deletion of Serbp1 using oocyte-specific Zp3/Gdf9-Cre drivers resulted in arrested oocyte growth, female infertility, and failure of blastocyst formation from two-cell embryos.
View Article and Find Full Text PDFMol Biol Cell
September 2025
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104.
The parasite causes severe diarrheal disease that can be life-threatening, and effective treatments are sorely lacking. Recently, aspartyl proteases (ASP) have emerged as targets with significant therapeutic potential in several related parasites resulting in the development of multiple potent leads. ASPs are critical to the proteolytic activation and maturation of secretory proteins parasites rely on to invade, manipulate, and upon completion of their replication cycle exit the host cells in which they reside.
View Article and Find Full Text PDF