98%
921
2 minutes
20
Respiratory viruses can be transmitted by multiple modes, including contaminated surfaces, commonly referred to as fomites. Efficient fomite transmission requires that a virus remain infectious on a given surface material over a wide range of environmental conditions, including different relative humidities. Prior work examining the stability of influenza viruses on surfaces has relied upon virus grown in media or eggs, which does not mimic the composition of virus-containing droplets expelled from the human respiratory tract. In this study, we examined the stability of the 2009 pandemic H1N1 (H1N1pdm09) virus on a variety of nonporous surface materials at four different humidities. Importantly, we used virus grown in primary human bronchial epithelial cell (HBE) cultures from different donors to recapitulate the physiological microenvironment of expelled viruses. We observed rapid inactivation of H1N1pdm09 on copper under all experimental conditions. In contrast to copper, viruses were stable on polystyrene plastic, stainless steel, aluminum, and glass, at multiple relative humidities, but greater decay on acrylonitrile butadiene styrene (ABS) plastic was observed at short time points. However, the half-lives of viruses at 23% relative humidity were similar among noncopper surfaces and ranged from 4.5 to 5.9 h. Assessment of H1N1pdm09 longevity on nonporous surfaces revealed that virus persistence was governed more by differences among HBE culture donors than by surface material. Our findings highlight the potential role of an individual's respiratory fluid on viral persistence and could help explain heterogeneity in transmission dynamics. Seasonal epidemics and sporadic pandemics of influenza cause a large public health burden. Although influenza viruses disseminate through the environment in respiratory secretions expelled from infected individuals, they can also be transmitted by contaminated surfaces where virus-laden expulsions can be deposited. Understanding virus stability on surfaces within the indoor environment is critical to assessing influenza transmission risk. We found that influenza virus stability is affected by the host respiratory secretion in which the virus is expelled, the surface material on which the droplet lands, and the ambient relative humidity of the environment. Influenza viruses can remain infectious on many common surfaces for prolonged periods, with half-lives of 4.5 to 5.9 h. These data imply that influenza viruses are persistent in indoor environments in biologically relevant matrices. Decontamination and engineering controls should be used to mitigate influenza virus transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10370307 | PMC |
http://dx.doi.org/10.1128/aem.00633-23 | DOI Listing |
Build Environ
March 2025
National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention (CDC), Morgantown, West Virginia, USA.
Influenza viruses can be aerosolized when slaughtering infected chickens, which increases the risk of zoonotic transmission. We conducted pilot experiments to measure the concentrations of airborne particles <2.5 μm during slaughtering and defeathering of chickens to help identify methods that can minimize workers' exposure to potentially hazardous aerosol particles.
View Article and Find Full Text PDFVet Anim Sci
December 2025
Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.
Muscovy duck reovirus (MDRV) and Novel duck reovirus (NDRV) are highly infectious diseases of waterfowl, causing significant harm to the global poultry industry. Early detection and diagnosis of NDRV and MDRV in clinical samples are crucial for effectively preventing and controlling these diseases. This study developed a duplex crystal digital PCR (dPCR) assay for the differential detection of NDRV and MDRV.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
September 2025
Grupo de Investigaciones en Biología de la Conservación, Laboratorio Ecotono, INIBIOMA, Universidad Nacional del Comahue - CONICET, San Carlos de Bariloche, Argentina.
J Med Internet Res
September 2025
Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.
View Article and Find Full Text PDFEmerg Microbes Infect
September 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
Enveloped viruses rely on matrix proteins for structural integrity and lifecycle progression. Matrix protein 1 (M1) is the most abundant structural protein of influenza A virus (IAV), playing a multifaceted role in viral uncoating, polymerase activity, vRNA transcription and replication, and assembly and budding. The M1 protein not only interacts with host cells but also regulates viral morphogenesis, thereby influencing viral transmissibility and pathogenicity.
View Article and Find Full Text PDF