Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein O-glycosylation is a nutrient-signaling mechanism that plays essential roles in maintaining cellular homeostasis across different species. In plants, SPINDLY (SPY) and SECRET AGENT (SEC) catalyze posttranslational modifications of hundreds of intracellular proteins by O-fucose and O-linked N-acetylglucosamine, respectively. SPY and SEC play overlapping roles in cellular regulation and loss of both SPY and SEC causes embryo lethality in Arabidopsis. Using structure-based virtual screening of chemical libraries followed by and assays, we identified a S PY O - f ucosyltransferase i nhibitor (SOFTI). Computational analyses predicted that SOFTI binds to the GDP-fucose-binding pocket of SPY and competitively inhibits GDP-fucose binding. assays confirmed that SOFTI interacts with SPY and inhibits its O-fucosyltransferase activity. Docking analysis identified additional SOFTI analogs that showed stronger inhibitory activities. SOFTI treatment of Arabidopsis seedlings decreased protein O-fucosylation and caused phenotypes similar to the mutants, including early seed germination, increased root hair density, and defect in sugar-dependent growth. By contrast, SOFTI had no visible effect on the mutant. Similarly, SOFTI inhibited sugar-dependent growth of tomato seedlings. These results demonstrate that SOFTI is a specific SPY O-fucosyltransferase inhibitor and a useful chemical tool for functional studies of O-fucosylation and potentially for agricultural management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312698PMC
http://dx.doi.org/10.1101/2023.06.13.544843DOI Listing

Publication Analysis

Top Keywords

structure-based virtual
8
virtual screening
8
softi
8
sugar-dependent growth
8
spy
6
screening identifies
4
identifies small
4
small molecule
4
molecule inhibitors
4
inhibitors o-fucosyltransferase
4

Similar Publications

Plant-Derived Anticancer Candidates Targeting mTOR, EGFR, HER2: Insights From Molecular Docking and Dynamics Simulations.

Chem Biodivers

September 2025

School of Traditional Chinese Materia Medica, Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, Shenyang, Shenyang Pharmaceutical University, Shenyang, China.

In intracellular signaling, mammalian target of rapamycin (mTOR) as an important mammalian target for breast cancer therapy, plays a key role in receiving upstream signals from growth factor receptors such as epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Using 30 compounds from Meehania fargesii var. Radicans, structure-based virtual screening and molecular docking were performed to develop novel and safe breast cancer targeting inhibitors from natural products.

View Article and Find Full Text PDF

Potato virus Y (PVY) is one of the most economically detrimental phytoviruses affecting global Solanaceae, possessing challenges in agrochemical control. The structural elucidation of PVY coat protein (CP) offers opportunities for the rational design of CP-targeted antivirals; however, the feasibility of identifying lead compounds via virtual screening remains largely unexplored. Herein, we report the successful case of structure-based virtual screening leveraging PVY CP, enabling the identification of a structurally novel lead with a unique mechanism of action.

View Article and Find Full Text PDF

This review meticulously examines the development, design, and pharmacological assessment of both well known antiviral and antihypertensive medications all time employing new chemical techniques and structure-based drug design to design and synthesize vital therapeutic entities such as aliskiren (renin inhibitor), captopril (a2-ACE-Inhibitor), dorzolamide (inhibitor of carbonic anhydrase) the review demonstrates initial steps regarding the significance of stereoselective synthesis, metal chelating pharmacophores, and rational molecular properties. More importantly, protease inhibitors (i.e.

View Article and Find Full Text PDF

Identification of potential alternatives for isoniazid: An in silico molecular dynamics study.

J Mol Graph Model

August 2025

Department of Biotechnology, Delhi Technological University, Delhi, 110042, India. Electronic address:

Tuberculosis (TB) remains a major global health concern that affects millions and results in several casualties and these numbers are further increased because of the drug-resistant strains of Mycobacterium tuberculosis (M. tb). Current treatments, such as Isoniazid (INH), while effective, are increasingly compromised by resistance and associated side effects, emphasizing the urgent need for new therapeutic options.

View Article and Find Full Text PDF

Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglia-specific receptor whose activation promotes phagocytosis and neuroprotection in Alzheimer's disease (AD) and related neurodegenerative disorders. While therapeutic efforts have largely focused on antibodies, small molecule TREM2 modulators remain limited. Here, we applied a structure- based virtual screening workflow targeting a putative allosteric site on TREM2, guided by PyRod-derived pharmacophores from molecular dynamics simulations.

View Article and Find Full Text PDF