98%
921
2 minutes
20
Objective: To evaluate the prediction accuracy of the Kubelka-Munk Reflectance Theory and other more innovative two-flux and four-flux models for predicting the reflectance and transmittance factors of two flowable dental resin composites of various thicknesses within clinically acceptable color difference.
Methods: Cylindrical samples of Aura Easy Flow resin composite (Ae1, Ae2, Ae3, Ae4 shades) and Estelite Universal Flow SuperLow resin composite (A1, A2, A3, A3.5, A4, A5 shades) were prepared with thicknesses ranging from 0.3 mm to 1.8 mm. Their reflectance and transmittance factors were measured with a spectrophotometer based on an integrating sphere, and were also predicted by 3 different two-flux models and 2 different four-flux models. The accuracy of reflectance and transmittance factor predictions was assessed using the CIEDE2000 color distance metric and 50:50% acceptability and perceptibility threshold criteria.
Results: Eymard's four-flux model is found to be the most accurate for predicting the spectral reflectance and transmittance factors, with 85% (resp. 100%) of all color deviations below the acceptability threshold, and below the perceptibility threshold for 40% (resp. 57%) of the samples with thickness ranging from 0.3 to 1.8 mm in reflectance (resp. transmittance) mode. The Kubelka-Munk Reflectance Theory is found to be the least accurate model for predicting the spectral reflectance and transmittance factors of dental resin of thickness ranging from 0.3 to 1.8 mm.
Significance: Eymard's four-flux model enables to predict the color of slices of dental materials within acceptable color differences. Eymard's four-flux model's optical parameters thus describe light-matter interactions in dental materials more accurately than state of the art Kubelka-Munk Reflectance Theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2023.06.010 | DOI Listing |
Adv Mater
September 2025
Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and International Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
Transmission-type radiative cooling textiles represent a vital strategy for personal thermal management. However, traditional preparation methods based on heat-induced phase separation face significant challenges regarding cost, environmental impact, and optical performance. Herein, a novel preparation method is devloped by blending mid-IR transparent solid styrene ethylene butylene styrene (SEBS) with solid polyethylene (PE), enabling the creation of pores through dissolving SEBS.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Food Science and Agricultural Chemistry, McGill University, Quebec H9X 3V9, Canada.
Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
School of Chemical Engineering and Technology and State Key Laboratory of Chemical Engineering and Low-Carbon Technology, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China; Tianjin
Hypothesis: Photovoltaic (PV) panels, the cornerstone of solar energy conversion, are vulnerable to performance degradation caused by surface fogging and contamination accumulation. Although superhydrophilic coatings have been explored to address these issues, their application remains constrained by their singular functionalities. Surfactant assemblies, owing to their amphiphilic molecular structures and capacity for interfacial modulation, emerge as promising candidates for maintaining the photoelectric conversion efficiency (PCE) of PV panels under variable humidity conditions.
View Article and Find Full Text PDFNanophotonics
August 2025
National Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China.
Electromagnetic scattering control of optical windows has significant challenges in improving optical transmission and compatibility, especially for multispectral and large-angle incidences, due to material and structure mismatches. This paper presents trans-scale hierarchical metasurfaces (THM) to achieve wide-angle optical transmission enhancement and electromagnetic scattering-compatible regulation in dual-band lasers, and infrared and microwave ranges. THM comprises an ultrafine hollow metal array (UHMA) and a transmission-enhanced micro-nanocone array (TMCA).
View Article and Find Full Text PDFRSC Adv
August 2025
Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 China
To address the technical challenges of monitoring brine seepage in salt lakes, this study pioneers the application of B isotope tracer to seepage detection, establishing a high-precision monitoring system that provides scientific foundations for precise seepage channel identification and flow field characterization. Systematic laboratory experiments validate the exceptional performance of the B tracer, including ultra-trace detection sensitivity of 10, a stable recovery rate of 92.8-106.
View Article and Find Full Text PDF