Publications by authors named "Raphael Clerc"

Objective: To assess the prediction accuracy of recent optical and numerical models for the spectral reflectance and color of monolithic samples of dental materials with different thicknesses.

Methods: Samples of dental resin composites of Aura Easy Flow (Ae1, Ae3 and Ae4 shades) and Estelite Universal Flow Super Low (A1, A2, A3, A3.5, A4 and A5 shades) with thicknesses between 0.

View Article and Find Full Text PDF

Optical characterization and appearance prediction of translucent materials are required in many fields of engineering such as computer graphics, dental restorations or 3D printing technologies. In the case of strongly scattering materials, flux transfer models like the Kubelka-Munk model (2-flux) or the Maheu's 4-flux model have been successfully used to this aim for decades. However, they lead to inaccurate prediction of the color variations of translucent objects of different thicknesses.

View Article and Find Full Text PDF

Electrical doping of metal halide perovskites (MPHs) is a key step towards the use of this efficient and cost-effective semiconductor class in modern electronics. In this work, we demonstrate n-type doping of methylammonium lead iodide (CHNHPbI) by the post-fabrication introduction of Sm. The ionic radius of the latter is similar to that of Pb and can replace it without altering the perovskite crystal lattice.

View Article and Find Full Text PDF

Objective: To evaluate the prediction accuracy of the Kubelka-Munk Reflectance Theory and other more innovative two-flux and four-flux models for predicting the reflectance and transmittance factors of two flowable dental resin composites of various thicknesses within clinically acceptable color difference.

Methods: Cylindrical samples of Aura Easy Flow resin composite (Ae1, Ae2, Ae3, Ae4 shades) and Estelite Universal Flow SuperLow resin composite (A1, A2, A3, A3.5, A4, A5 shades) were prepared with thicknesses ranging from 0.

View Article and Find Full Text PDF

In many commercial instruments for measuring reflectance, the area illuminated on the measured object is identical to the area from which light is collected. This configuration is suitable for strongly scattering materials such as paper, but issues arise with translucent materials, because a portion of the incident light spreads around the illuminated area by subsurface transport and escapes the detection system. This phenomenon, referred to as edge loss, yields erroneous, underestimated reflectance measurements.

View Article and Find Full Text PDF

Hyperspectral imaging has shown great potential for optical skin analysis by providing noninvasive, pixel-by-pixel surface measurements from which, applying an optical model, information such as melanin concentration and total blood volume fraction can be mapped. Such applications have been successfully performed on small flat skin areas, but existing methods are not suited to large areas such as an organ or a face, due to the difficulty of ensuring homogeneous illumination on complex three-dimensional (3-D) objects, which leads to errors in the maps. We investigate two methods to account for these irradiance variations on a face.

View Article and Find Full Text PDF