Inoculation of Escherichia coli enriched the key functional bacteria that intensified cadmium accumulation by halophyte Suaeda salsa in saline soils.

J Hazard Mater

Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China. Electronic address:

Published: September 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The enhancement of cadmium (Cd) extraction by plants from contaminated soils associated with phosphate-solubilizing bacteria (PSB) has been widely reported, but the underlying mechanism remains scarcely, especially in Cd-contaminated saline soils. In this study, a green fluorescent protein-labeled PSB, the strain E. coli-10527, was observed to be abundantly colonized in the rhizosphere soils and roots of halophyte Suaeda salsa after inoculation in saline soil pot tests. Cd extraction by plants was significantly promoted. The enhanced Cd phytoextraction by E. coli-10527 was not solely dependent on bacterial efficient colonization, but more significantly, relied on the remodeling of rhizosphere microbiota, as confirmed by soil sterilization test. Taxonomic distribution and co-occurrence network analyses suggested that E. coli-10527 strengthened the interactive effects of keystone taxa in the rhizosphere soils, and enriched the key functional bacteria that involved in plant growth promotion and soil Cd mobilization. Seven enriched rhizospheric taxa (Phyllobacterium, Bacillus, Streptomyces mirabilis, Pseudomonas mirabilis, Rhodospirillale, Clostridium, and Agrobacterium) were obtained from 213 isolated strains, and were verified to produce phytohormone and promote soil Cd mobilization. E. coli-10527 and those enriched taxa could assemble as a simplified synthetic community to strengthen Cd phytoextraction through their synergistic interactions. Therefore, the specific microbiota in rhizosphere soils enriched by the inoculated PSB were also the key to intensifying Cd phytoextraction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.131922DOI Listing

Publication Analysis

Top Keywords

rhizosphere soils
12
enriched key
8
key functional
8
functional bacteria
8
halophyte suaeda
8
suaeda salsa
8
saline soils
8
extraction plants
8
soils enriched
8
soil mobilization
8

Similar Publications

As the world's largest producer of kiwifruit, China faces significant yield and quality losses due to the widespread occurrence of kiwifruit root rot. To explore alternative biological control strategies for kiwifruit root rot, this study isolated 11 fungal isolates from diseased kiwifruit roots and identified as the primary pathogen. Additionally, a biocontrol strain, C3, was isolated from the rhizosphere of healthy kiwifruit and shown to significantly inhibit pathogen growth.

View Article and Find Full Text PDF

The increasing presence of nanoplastics (NPs) in terrestrial environments raises concerns about their bioavailability and potential impacts on crops. This study investigates the uptake and translocation of environmentally relevant polystyrene nanoplastics (eNPs-PS) in Hordeum vulgare L. via soil.

View Article and Find Full Text PDF

Mortierella alpina bioinoculant potentiates native microbiota for soil borne disease suppression in Panax notoginseng cultivation.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China. Electronic ad

Mortierella spp. is emerging as a potential biocontrol agent against soil borne diseases due to its antagonistic effects on pathogens and strong environmental adaptability. However, the mechanisms by which it restructures rhizosphere microbial communities to achieve sustained pathogen suppression remain largely unresolved.

View Article and Find Full Text PDF

Efficient degradation mechanism of fomesafen by earthworms and gut degrading bacteria synthetic community.

Pestic Biochem Physiol

November 2025

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:

Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF