98%
921
2 minutes
20
More and more researchers are studying the heat transfer performance of aeronautical materials at high temperatures. In this paper, we use a quartz lamp to irradiate fused quartz ceramic materials, and the sample surface temperature and heat flux distribution were obtained at a heating power of 45~150 kW. Furthermore, the heat transfer properties of the material were analyzed using a finite element method and the effect of surface heat flow on the internal temperature field was investigated. The results show that the fiber skeleton structure has a significant effect on the thermal insulation performance of fiber-reinforced fused quartz ceramics and the longitudinal heat transfer along the rod fiber skeleton is slower. As time passes, the surface temperature distribution tends to stability and reaches an equilibrium state. The surface temperature of fused quartz ceramic increases with the increase in the radiant heat flux of the quartz lamp array. When the input power is 5 kW, the maximum surface temperature of the sample can reach 1153 °C. However, the non-uniformity of the sample surface temperature also increases, reaching a maximum uncertainty of 12.28%. The research in this paper provides important theoretical guidance for the heat insulation design of ultra-high acoustic velocity aircraft.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304673 | PMC |
http://dx.doi.org/10.3390/mi14061231 | DOI Listing |
Ther Hypothermia Temp Manag
September 2025
University Hospital of Wales, Cardiff, Wales, United Kingdom.
The critical care unit at the University Hospital of Wales is a 38-bedded tertiary center. In 2023, the unit admitted 1251 unscheduled patients, of which 131 were out-of-hospital cardiac arrest (OOHCA) patients. The unit also participated in the Targeted Temperature Management 2 study and adopted the findings shortly after its publication in 2021.
View Article and Find Full Text PDFSmall Methods
September 2025
Department of Materials Science and Engineering, National Cheng Kung University, No. 1 University Road, Tainan, 70101, Taiwan.
Electron Fenton (EF) degradation often suffers from low in situ HO electrosynthesis and Fe regeneration. Herein, a novel multi-element oxide-sulfide heterostructure is reported, (FeVCoCuMn)O/(CuFeVCoMn)S, for efficient and stable EF degradation. The oxide-sulfide phase ratio is optimized through temperature control during the synthesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemical Engineering, Keimyung University, Daegu 42601, Republic of Korea.
Indium tin oxide (Sn/InO) is a degenerately doped semiconductor nanocrystal (NC) that exhibits localized surface plasmon resonance (LSPR) in the short-wavelength infrared electromagnetic spectral range. Alternative to metals, the tunability of LSPR is possible in doped semiconductor NCs by controlling the dopant type, doping level, and opto-electrochemical modulation. In this study, dopant oxidation valency in carrier density and LSPR peaks (Sn(IV): 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Colloid and Biointerface Science, Institute of Colloid and Biointerface Science, BOKU University, 1190 Vienna, Austria.
Implant-associated infections caused by bacterial biofilms remain a major clinical challenge, with high morbidity, often necessitating prolonged antibiotic therapy or implant revision surgery. To address the need for noninvasive alternatives, we investigated the use of alternating magnetic fields (AMFs) as a localized treatment modality for eradicating biofilms on titanium implant model surfaces. We demonstrate that AMF exposure effectively removes biofilms and kills bacteria at moderately elevated temperatures on the implant.
View Article and Find Full Text PDFJ Sep Sci
September 2025
Programa De Pós-Graduação em Química, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.
Secondary metabolites are important bioactive compounds for diet and medicine. This study optimizes the extraction of hydroethanolic herbal extracts using an EDGE (Energized Dispersive Guided Extraction) system, evaluates their antioxidant capacity, and analyzes correlations among antioxidant activity, total phenolic content, and individual compounds. A Doehlert matrix design was used to optimize extraction, having temperature and time as independent variables, and total phenolic content (mg GAE/g) as the response, quantified via the Folin-Ciocalteu method.
View Article and Find Full Text PDF