Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radial extracorporeal shock wave therapy (rESWT) is increasingly being used to treat musculoskeletal injuries in horses. The aim of this study was to assess the influence of rESWT on the skin surface temperature of the longissimus dorsi muscle in clinically healthy racing horses. A total of 24 thoroughbreds were divided into a study group ( = 12) and an rESWT-sham group ( = 12). The study group underwent rESWT, whereas the rESWT-sham group had rESWT without probe activation in the treated area. Both groups underwent thermographic examination before and just after rESWT to determine and compare skin surface temperatures. Palpation examination was performed after the first and second thermography examination to assess longissimus dorsi muscle tone. Additionally, thermographic examination was repeated 10 min after the rESWT. In both groups, there was an increase in skin surface temperature just after rESWT, and a decrease 10 min after it to below the initial value. In the study group, the skin surface temperature just after rESWT was higher than in the rESWT-sham group. Additionally, in the study group the average muscle tone before rESWT was significantly higher than just after the procedure, whereas in the rESWT-sham group the average change in muscle tone was not significant. The results proved that rESWT increases skin surface temperature of the longissimus dorsi muscle in clinically healthy horses. Further research is necessary in order to configure shockwave treatment with appropriate parameters for effective and safe therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295447PMC
http://dx.doi.org/10.3390/ani13122028DOI Listing

Publication Analysis

Top Keywords

skin surface
24
surface temperature
20
longissimus dorsi
16
dorsi muscle
16
study group
16
reswt-sham group
16
temperature longissimus
12
muscle clinically
12
clinically healthy
12
muscle tone
12

Similar Publications

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF

Utilizing biomaterials for laryngeal respiratory mucosal tissue repair in an animal model.

Biomater Biosyst

September 2025

ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Introduction: The airway mucosa plays a crucial role in protection and various physiological functions. Current methods for restoring airway mucosa, such as myocutaneous flaps or split skin grafts, create a stratified squamous layer that lacks the cilia and mucus-secreting glands of the native columnar-lined airway. This study examines the application of various injectable biopolymers as active molecules for a potential approach to regenerating laryngeal epithelial tissue.

View Article and Find Full Text PDF

Background: Fixed drug eruption is a type of adverse drug reaction affecting the skin, marked by recurrent rashes that appear at the same site each time a particular drug is taken. Generalized bullous fixed drug eruption (GBFDE) is a severe form of FDE characterized by vesicles or bullae and involvement of a significant portion of the body surface area. To date, no association between GBFDE and chlordiazepoxide has been reported in the literature.

View Article and Find Full Text PDF

Background: Understanding respiratory motions of liver and its surrogate organs is crucial for precise dose delivery in liver cancer radiotherapy. Although these motions have been studied for respiratory motion management in the supine posture, few studies have quantified them and evaluated their correlations in the upright posture.

Purpose: This study quantified the respiratory motions of liver and surrogate organs and evaluated the correlations between the liver motions and surrogate signals for respiratory motion monitoring in both the supine and upright postures.

View Article and Find Full Text PDF

Microenvironment-Driven Mast Cell Plasticity: Insights From Cytokine-Activated Gene Signatures in Skin and Respiratory Diseases.

Allergy

September 2025

Department of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK.

Mast cells (MCs) rapidly adapt to the microenvironment due to the plethora of cytokine receptors expressed. Understanding microenvironment-primed immune responses is essential to elucidate the phenotypic/functional changes MCs undergo, and thus understand their contribution to diseases and predict the most effective therapeutic strategies. We exposed primary human MCs to cytokines mimicking a T1/pro-inflammatory (IFNγ), T2/allergic (IL-4 + IL-13), alarmin-rich (IL-33) and pro-fibrotic/pro-tolerogenic (TGFβ) microenvironment.

View Article and Find Full Text PDF