Recent Progress in Diboronic-Acid-Based Glucose Sensors.

Biosensors (Basel)

Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-enzymatic sensors with the capability of long-term stability and low cost are promising in glucose monitoring applications. Boronic acid (BA) derivatives offer a reversible and covalent binding mechanism for glucose recognition, which enables continuous glucose monitoring and responsive insulin release. To improve selectivity to glucose, a diboronic acid (DBA) structure design has been explored and has become a hot research topic for real-time glucose sensing in recent decades. This paper reviews the glucose recognition mechanism of boronic acids and discusses different glucose sensing strategies based on DBA-derivatives-based sensors reported in the past 10 years. The tunable p, electron-withdrawing properties, and modifiable group of phenylboronic acids were explored to develop various sensing strategies, including optical, electrochemical, and other methods. However, compared to the numerous monoboronic acid molecules and methods developed for glucose monitoring, the diversity of DBA molecules and applied sensing strategies remains limited. The challenges and opportunities are also highlighted for the future of glucose sensing strategies, which need to consider practicability, advanced medical equipment fitment, patient compliance, as well as better selectivity and tolerance to interferences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296726PMC
http://dx.doi.org/10.3390/bios13060618DOI Listing

Publication Analysis

Top Keywords

sensing strategies
16
glucose monitoring
12
glucose sensing
12
glucose
10
glucose recognition
8
sensing
5
progress diboronic-acid-based
4
diboronic-acid-based glucose
4
glucose sensors
4
sensors non-enzymatic
4

Similar Publications

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Patients' sense of safety and well-being may be affected in numerous ways while being cared for in hospitals. Often, feelings of alienation arise, as private spaces like the home are inaccessible. One aspect that impacts patients' safety and well-being is the design of the physical care environment.

View Article and Find Full Text PDF

Purely organic materials showing efficient and persistent emission via room temperature phosphorescence (RTP) allow the design of minimalistic yet powerful technological solutions for sensing, bioimaging, information storage, and safety applications using the photonic design principle of digital luminescence. Although several promising materials exist, a deep understanding of the underlying structure-property relationship and, thus, development of rational design strategies are widely missing. Some of the best purely organic emitters follow the donor-acceptor-donor design motif.

View Article and Find Full Text PDF

High Current Gain Endowed by Heterojunction Engineering Coupling Interfacial Molecular Modulation: A Low-Ascorbic Acid-Dependent Organic Photoelectrochemical Transistor Aptasensing Platform.

Anal Chem

September 2025

School of Agricultural Engineering, Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.

To balance the "detection sensitivity" and "device stability" of the organic photoelectrochemical transistor (OPECT) aptasensors, it has become an urgent challenge for achieving effective signal modulation under low ascorbic acid (AA) conditions. To address this, our work proposed a collaborative optimization strategy by coupling heterojunction engineering with interfacial molecular modulation, to endow a high current gain of OPECT with low-AA -dependence. First, a CdZnS-SnInS heterojunction gate was constructed by in situ growth of CdZnS quantum dots (QDs) on SnInS nanoflowers, which enhanced the light trapping ability and photoelectric conversion efficiency of the photoactive gate.

View Article and Find Full Text PDF

State of eye-tracking technology research to enhance construction safety.

J Safety Res

September 2025

Department of Construction Engineering and Management, North China University of Water Resources and Electric Power, Zhengzhou 450046, China. Electronic address:

Introduction: This study aims to provide a comprehensive review of the application of eye-tracking technology in construction safety, establishing a theoretical foundation and benchmark to guide future research and innovation in the field.

Method: This study identified 116 relevant papers published between 2003 and 2023 indexed by Web of Science (WoS), Scopus, and the American Society of Civil Engineers (ASCE) Library. The analysis of the 116 papers revealed trends about the dates of the publication of the papers, the locations of the research, the journals and conference proceedings that published the studies, and the extent of the collaboration between authors, which indicate that eye-tracking technology has become an important tool to enhance construction safety.

View Article and Find Full Text PDF