Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The development of effective and flexible vaccine platforms is a major public health challenge, especially in the context of influenza vaccines that have to be renewed every year. Adenoviruses (AdVs) are easy to produce and have a good safety and efficacy profile when administered orally, as demonstrated by the long-term use of oral AdV-4 and -7 vaccines in the U.S. military. These viruses therefore appear to be the ideal backbone for the development of oral replicating vector vaccines. However, research into these vaccines is limited by the ineffectiveness of human AdV replication in laboratory animals. The use of mouse AdV type 1 (MAV-1) in its natural host allows infection to be studied under replicating conditions. Here, we orally vaccinated mice with a MAV-1 vector expressing influenza hemagglutinin (HA) to assess the protection conferred against an intranasal challenge of influenza. We showed that a single oral immunization with this vaccine generates influenza-specific and -neutralizing antibodies and completely protects mice against clinical signs and viral replication, similar to traditional inactivated vaccines. Given the constant threat of pandemics and the need for annual vaccination against influenza and possibly emerging agents such as SARS-CoV-2, new types of vaccines that are easier to administer and therefore more widely accepted are a critical public health need. Here, using a relevant animal model, we have shown that replicative oral AdV vaccine vectors can help make vaccination against major respiratory diseases more available, better accepted, and therefore more effective. These results could be of major importance in the coming years in the fight against seasonal or emerging respiratory diseases such as COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373536PMC
http://dx.doi.org/10.1128/jvi.00135-23DOI Listing

Publication Analysis

Top Keywords

single oral
8
oral immunization
8
protects mice
8
public health
8
respiratory diseases
8
vaccines
6
influenza
5
immunization replication-competent
4
replication-competent adenovirus-vectored
4
vaccine
4

Similar Publications

Effect of Drill Handle Force Applied to Digital Surgical Guides on Implant Deviation: An In Vitro Study.

Clin Implant Dent Relat Res

October 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Introduction: This in vitro study evaluated how different forces applied to the dental drill handle during static computer-assisted implant surgery influence surgical guide deformation and implant placement accuracy.

Methods: Twenty-four virtual implants were divided into six groups (0-10 N, in 2 N increments). Surgical guides were scanned under loaded conditions, and deviations were quantified by superimposition with the baseline model.

View Article and Find Full Text PDF

Ilunocitinib, a novel Janus kinase inhibitor, is indicated for managing pruritus and skin lesions associated with canine allergic and atopic dermatitis. Pharmacokinetics of ilunocitinib were investigated following single intravenous and oral administrations, both in fed and fasted states. Dose proportionality was assessed using oral doses ranging from 0.

View Article and Find Full Text PDF

Functional Validation of Noncoding Variants Associated With Nonsyndromic Orofacial Cleft.

Hum Mutat

September 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Over the past decade, genome-wide association studies (GWASs) have found genetic variants associated with elevated risk for nonsyndromic orofacial cleft (NSOFC). In the post-GWAS era of NSOFC genetic research, an important aim is to identify the pathogenic variants that influence craniofacial development processes, towards understanding how they lead to disease manifestation. However, two major challenges hinder the translation of GWAS results into a mechanistic understanding.

View Article and Find Full Text PDF

Objective: Enterovirus 71 (EV-A71) is a major pathogen of severe hand, foot and mouth disease (HFMD) in children, but the mechanism by which it develops into severe HFMD remains unclear, especially the role of macrophage-mediated immune dysregulation.

Methods: Bioinformatics tools were utilized to analyze the transcriptome sequencing results of peripheral blood monocytes (PBMCs) infected with different titers of EV-A71 at various time points. Single-cell sequencing technology was used to sequence obtained PBMCs from a severe HFMD patient due to EV-A71 and a healthy control.

View Article and Find Full Text PDF

Introduction: Accurately predicting tumor cell line responses to therapeutic drugs is essential for personalized cancer treatment. Current methods using bulk cell data fail to fully capture tumor heterogeneity and the complex mechanisms underlying treatment responses.

Methods: This study introduces a novel method, ATSDP-NET (Attention-based Transfer Learning for Enhanced Single-cell Drug Response Prediction), which combines bulk and single-cell data.

View Article and Find Full Text PDF