98%
921
2 minutes
20
We have shown previously that the ketogenic diet (KD) is effective in reducing seizures associated with infantile spasms syndrome (ISS) and that this benefit is related to alterations in the gut microbiota. However, it remains unclear whether the efficacy of the KD persists after switching to a normal diet. Employing a neonatal rat model of ISS, we tested the hypothesis that the impact of the KD would diminish when switched to a normal diet. Following epilepsy induction, neonatal rats were divided into two groups: continuous KD for 6 days; and a group fed with KD for 3 days and then a normal diet for 3 days. Spasms frequency, mitochondrial bioenergetics in the hippocampus, and fecal microbiota were evaluated as major readouts. We found that the anti-epileptic effect of the KD was reversible, as evidenced by the increased spasms frequency in rats that were switched from the KD to a normal diet. The spasms frequency was correlated inversely with mitochondrial bioenergetic function and a set of gut microbes, including Streptococcus thermophilus and Streptococcus azizii. These findings suggest that the anti-epileptic and metabolic benefits of the KD decline rapidly in concert with gut microbial alterations in the ISS model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/epi.17688 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.
Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
Diet regimes rich in fruits and vegetables have been adopted as effective strategies for the management of type 2 diabetes mellitus (T2DM). Here, we identified miR166e, a plant miRNA abundantly present in fruits and vegetables, as a functional agent that ameliorates T2DM in a mouse model. Orally administered miR166e oligomers passed through digestion, accumulated in the intestines at 14.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
Objectives: To investigate the therapeutic effect of electroacupuncture (EA) at Zusanli (ST36) acupoint on hyperlipidemia in mice and explore the underlying mechanisms.
Methods: Thirty C57BL/6J mice were equally randomized into normal diet group, high-fat diet (HFD) group, and EA group. The changes in blood lipids and serum malondialdehyde (MDA) content of the mice were evaluated, and histopathological changes and lipid accumulation in the liver were observed using Oil red O staining (ORO).
J Endocrinol Invest
September 2025
Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
Purposes: Controversy has emerged regarding the impact of non-nutritive sweeteners (NNS) on body weight. This systematic review and meta-analysis of randomized controlled trials aims to assess the effect of NNS intake on body weight change.
Results: Of the 3327 studies retrieved, 19 met the eligibility criteria for inclusion in the meta-analysis.
Am J Pathol
September 2025
Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Res
Aldehyde dehydrogenase 2 (ALDH2) is a critical enzyme involved in the detoxification of acetaldehyde. Although numerous studies have demonstrated the significance of ALDH2 in alcohol-associated liver disease (ALD), its role in alcohol-induced activation of liver progenitor cells (LPCs) has not been thoroughly investigated. Proteomic analysis of serum samples from patients with either normal ALDH2 genotype or ALDH2 mutation following alcohol consumption revealed that ALDH2 deficiency may suppress LPC proliferation.
View Article and Find Full Text PDF