98%
921
2 minutes
20
Rationale And Objectives: To investigate whether machine learning (ML) approaches using breast magnetic resonance imaging (MRI)-derived multiparametric and radiomic features could predict axillary lymph node metastasis (ALNM) in stage I-II triple-negative breast cancer (TNBC).
Materials And Methods: Between 2013 and 2019, 86 consecutive patients with TNBC who underwent preoperative MRI and surgery were enrolled and divided into ALNM (N = 27) and non-ALNM (n = 59) groups according to histopathologic results. For multiparametric features, kinetic features using computer-aided diagnosis (CAD), morphologic features, and apparent diffusion coefficient (ADC) values at diffusion-weighted images were evaluated. For extracting radiomic features, three-dimensional segmentation of tumors using T2-weighted images (T2WI) and T1-weighted subtraction images were respectively performed by two radiologists. Each predictive model using three ML algorithms was built using multiparametric features or radiomic features, or both. The diagnostic performances of models were compared using the DeLong method.
Results: Among multiparametric features, non-circumscribed margin, peritumoral edema, larger tumor size, and larger angio-volume at CAD were associated with ALNM in univariate analysis. In multivariate analysis, larger angio-volume was the sole statistically significant predictor for ALNM (odds ratio = 1.33, P = 0.008). Regarding ADC values, there were no significant differences according to ALNM status. The area under the receiver operating characteristic curve for predicting ALNM was 0.74 using multiparametric features, 0.77 using radiomic features from T1-weighted subtraction images, 0.80 using radiomic features from T2WI, and 0.82 using all features.
Conclusion: A predictive model incorporating breast MRI-derived multiparametric and radiomic features may be valuable in predicting ALNM preoperatively in patients with TNBC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2023.05.025 | DOI Listing |
J Neurooncol
September 2025
Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China.
Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.
Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.
Abdom Radiol (NY)
September 2025
Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.
Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.
Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.
Eur Radiol
September 2025
Quantitative Imaging Biomarkers in Medicine, Quibim, Valencia, Spain.
Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.
Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.
Radiother Oncol
September 2025
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:
Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans.
Materials/methods: Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented.
Radiother Oncol
September 2025
Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:
Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.
Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.
Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.