98%
921
2 minutes
20
Background: Multiple vaccines have been approved since August 2021 to prevent infection with SARS-CoV-2; however, 20-40% of immunocompromised people fail to develop SARS-CoV-2 spike antibodies after COVID-19 vaccination and remain at high risk of infection and more severe illness than non-immunocompromised hosts. Sotrovimab (VIR-7831) is a monoclonal neutralizing antibody that binds a conserved epitope on the SARS-CoV-2 spike protein. It is neither renally excreted nor metabolized by P450 enzymes and therefore unlikely to interact with concomitant medications (e.g., immunosuppressive medications). In this open-label feasibility study protocol, we will define the optimal dose and dosing interval of sotrovimab as pre-exposure prophylaxis for immunocompromised individuals as well as its safety and tolerability in this population specifically.
Methods: We will enroll 93 eligible immunocompromised adults with a negative or low-positive (< 50 U/mL) SARS-CoV-2 spike antibody. In phase 1, the first 10 patients will participate in a lead-in pharmacokinetics (PK) cohort study to determine the optimal dosing interval. Phase 2 will expand this population to 50 participants to examine rates of infusion-related reactions (IRR) with a 30-min 500 mg sotrovimab IV infusion. Phase 3 will be an expansion cohort for further assessment of the safety and tolerability of sotrovimab. In phase 4, the first 10 patients receiving 2000 mg IV of sotrovimab on the second sotrovimab infusion day will comprise a lead-in safety cohort that will inform the duration of observation following administration of the drug. The patients will be followed for safety and COVID-19 events for 36 weeks after the second dose.
Discussion: In a previous phase III randomized, placebo-controlled pivotal trial, there were no significant differences in the prevalence of adverse events in patients receiving sotrovimab vs. placebo. Thus, we propose an open-label feasibility study protocol of sotrovimab as pre-exposure prophylaxis for immunocompromised individuals to evaluate its PK in immunocompromised individuals with impaired SARS-CoV-2 humoral immunity and define optimal dosing intervals. We also aim to determine COVID-19 infections over the study period and self-reported quality of life measures throughout the study.
Trial Registration: ClinicalTrials.gov Identifier: NCT05210101.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273764 | PMC |
http://dx.doi.org/10.1186/s40814-023-01325-y | DOI Listing |
Mol Ther
September 2025
Be Biopharma, Cambridge, MA, 02139, USA. Electronic address:
Hemophilia B gene therapy treatments currently have not addressed the need for predictable, durable, active, and redosable factor IX (FIX). Unlike conventional gene therapy, engineered B Cell Medicines (BCMs) are durable, redosable, and titratable, and thus have the potential to address significant unmet needs in the Hemophilia B treatment paradigm. BE-101 is an autologous BCM comprised of expanded and differentiated B lymphocyte lineage cells genetically engineered ex vivo to secrete FIX-Padua.
View Article and Find Full Text PDFBehav Brain Res
September 2025
Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 441 002, India. Electronic address:
Alcohol Use Disorder (AUD) is a major global health challenge characterized by the recurrence of alcohol consumption, withdrawal symptoms, and significant social, economic, and health-related burdens. Despite conventional treatments such as cognitive behavioral therapy and medications like disulfiram and naltrexone, the majority of patients do not achieve adequate relief due to the multifactorial nature of this disorder, including mental health issues and neuroadaptive changes. Recent studies demonstrated that chronic alcohol consumption results in the disruption of both the production and signaling of endogenous agmatine, a neuromodulator synthesized from L-arginine.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea; Microblance Inc., Daegu 41566, Republic of Korea. Electronic address:
Abandoned mines have created extensive idle areas contaminated with heavy metals (HMs). Conventional remediation methods are often costly, environmentally disruptive, and pose risks to human health. As a sustainable alternative, a biological approach utilizing metal-tolerant plant growth-promoting bacteria (mPGPBs) was employed to remediate HM-contaminated soils and assess their biological safety.
View Article and Find Full Text PDFJACC Heart Fail
September 2025
Department of Cardiology, Reina Sofia University Hospital, Cordoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Cordoba, Spain; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
ESMO Open
September 2025
Aminex Therapeutics, Inc., Kenmore, USA. Electronic address:
Background: Dysregulation of polyamine synthesis has been observed in various cancer cell types. A novel approach to depriving cancer cells of polyamines involves the use of difluoromethylornithine (DFMO) to block polyamine biosynthesis in combination with AMXT 1501, a potent inhibitor of polyamine transport. Preclinical mouse tumor models showed that the combination of AMXT 1501 plus DFMO had strong antitumor activity, together with evidence of a stimulated immune response against tumors.
View Article and Find Full Text PDF