98%
921
2 minutes
20
Tetrodotoxin (TTX)-bearing fish are thought to accumulate TTXs in their bodies through a food chain that begins with marine bacteria. However, the mechanism of TTXs transfer between prey and predators in the food chain remains unclear and the reasons for regional differences in pufferfish toxicity are also unknown. To investigate these matters, we collected juveniles of four species of pufferfish, Takifugu alboplumbeus, Takifugu flavipterus, Takifugu stictonotus, and Chelonodon patoca, from various locations in the Japanese Islands, and subjected them to liquid chromatography-tandem mass spectrometry analysis for TTX and its analog 5,6,11-trideoxyTTX (TDT). Concentrations of these substances tended to be higher in pufferfish juveniles collected from the Sanriku coastal area (Pacific coast of northern Japan) than in those from other locations. Juveniles had higher concentrations of TTX at all locations than of TDT. Mitochondrial cytochrome c oxidase subunit I (COI) sequences specific to the TTX-bearing flatworm, Planocera multitentaculata, were detected in the intestinal contents of up to 100% of pufferfish juveniles from various sampling sites, suggesting that P. multitentaculata was widely involved in the toxification of the juveniles in the coastal waters of Japan. A toxification experiment was conducted on three species of pufferfish juveniles (T. alboplumbeus, Takifugu rubripes and C. patoca) using TTX-bearing flatworm eggs harboring equal amounts of TTX and TDT. The TTX content of juveniles fed on flatworm eggs was found to be more than twice that of TDT, suggesting that pufferfish preferentially incorporate TTX compared to TDT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.139214 | DOI Listing |
Sci Rep
July 2024
Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
Tetrodotoxin (TTX) is a potent neurotoxin that accumulates in Takifugu rubripes, commonly known as pufferfish, through the ingestion of TTX-bearing organisms as part of their food chain. Although researchers believe that pufferfish use TTX to relieve stress, data are not currently available on how TTX affects the gut microbiota of pufferfish. To address this gap, our study aimed to investigate whether administering TTX to fish could alter their gut microbiota and overall health under various salinity conditions, including 30.
View Article and Find Full Text PDFToxicon
August 2024
Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan.
Pufferfish saxitoxin- and tetrodotoxin (TTX)-binding protein (PSTBP) is considered to transfer TTX between tissues. The immunohistochemical distribution of PSTBP-homolog (PSTBPh) and TTX in the brain and pituitary of hatchery-reared juvenile tiger puffer Takifugu rubripes was investigated. PSTBPh was observed mainly in the pars intermedia of the pituitary.
View Article and Find Full Text PDFMar Biotechnol (NY)
June 2024
Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
Ecotoxicology
January 2024
Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, 210029, China.
The extensive utilization of Zinc Oxide nanoparticles (ZnO NPs) has garnered significant attention due to their detrimental impacts on ecosystem. Unfortunately, ecotoxicity of ZnO NPs in coastal waters with fluctuating salinity has been disregarded. This study mainly discussed the toxic effects of ZnO NPs on species inhabiting the transition zones between freshwater and brackish water, who are of great ecological and economic importance among fish.
View Article and Find Full Text PDFAnimal
December 2023
College of Marine Science, Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian 116023, China.
As important environmental factors, the light spectra and tank colours have not received sufficient attention. Most fishes have the ability to perceive environment, distinguish colours, and exhibit preferences or aversions towards different environments, which can provide a reference for the design of their rearing environment. Tiger puffer (Takifugu rubripes) is an important mariculture species in China and East Asia, but its preference for illumination spectra and tank colours is unclear.
View Article and Find Full Text PDF