Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359609PMC
http://dx.doi.org/10.1093/nar/gkad506DOI Listing

Publication Analysis

Top Keywords

cilia genes
24
evc ciliopathy
12
cilia
9
transcription factor
8
factor ets1
8
accessible regions
8
transcriptional program
8
program cilia
8
chromatin accessibility
8
ciliopathy patients
8

Similar Publications

Truncating Mutations in BBS10 and BBS12 Impair Proteostasis and Ciliary Architecture in Bardet-Biedl Syndrome.

Exp Eye Res

September 2025

Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Eye institu

Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by genetic heterogeneity. Despite significant progress in understanding the BBSome-coding genes associated with ciliopathies, the pathogenesis linked to mutations in chaperonin-coding genes (BBS6, BBS10, and BBS12) remains poorly defined. This study aims to confirm the genetic diagnosis of BBS and elucidate the pathological mechanisms in causative genes of BBS10 and BBS12.

View Article and Find Full Text PDF

Cilia, evolutionarily conserved organelles on eukaryotic cell surfaces, depend on the intraflagellar transport (IFT) system for their assembly, maintenance, and signaling. The IFT system orchestrates bidirectional trafficking of structural components and signaling molecules through coordinated actions of protein complexes and molecular motors. IFT complexes assemble into anterograde trains at the ciliary base and undergo structural remodeling at the ciliary tip to form retrograde trains, with bidirectional motility regulated by modifications on the trains per se and the microtubule tracks.

View Article and Find Full Text PDF

While significant progress has been made in understanding the heterogeneity in the NSCs, our understanding of similar heterogeneity among the more abundant transit amplifying progenitors is lagging. Our work on the NPs of the neonatal subventricular zone (SVZ) began over a decade ago, when we used antibodies to the 4 antigens, Lex CD133,LeX,CD140a and NG2 and FACs to classify subsets of the neontal SVZ as either multi-potential (MP1, MP2, MP3, MP4 and PFMPs), glial-restricted (GRP1, GRP2, and GRP3), or neuron-astrocyte restricted (BNAP). Using RNAseq we have characterized the distinctive molecular fingerprint of 4 SVZ neural progenitors and compared their gene expression profiles to those of the NSCs.

View Article and Find Full Text PDF

To explore the effect, postoperative mucosal pathological changes and molecular biological changes of reboot operation for type 2 inflammation chronic rhinosinusitis with nasal polyps(CRSwNP) patients, and to provide theoretical basis for the clinical application of this kind of operation. We collected 29 patients who were diagnosed with CRSwNP with type 2 inflammatino response and underwent Reboot surgery from June 2022 to August 2023, and 27 patients who were diagnosed with deviated septum and underwent simple submucosal resection of the septum as the control group. We conducted nasal symptom scoring, endoscopic sinusitis scoring, and CT scanning of the sinuses before and after surgery, as well as HE staining, immunohistochemical staining, and detection of inflammatory factors using Elisa kits at the time of surgery, 1, 3, and 6 months postoperatively.

View Article and Find Full Text PDF

TAOK2 drives opposing cilia length deficits in 16p11.2 deletion and duplication carriers.

Stem Cell Reports

August 2025

Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98106, USA. Electronic address:

Deletion and duplication of the 16p11.2 genomic locus are associated with opposing changes in brain size. To determine cellular mechanisms that underlie these opposing phenotypes, we performed quantitative phosphoproteomic analyses of induced pluripotent stem cells (iPSCs)-derived neural progenitor cells (NPCs) obtained from unaffected individuals, 16p11.

View Article and Find Full Text PDF