98%
921
2 minutes
20
Chemical upcycling of polyethylene (PE) can convert plastic waste into valuable resources. However, engineering a catalyst that allows PE decomposition at low temperatures with high activity remains a significant challenge. Herein, we anchored 0.2 wt.% platinum (Pt) on defective two-dimensional tungsten trioxide (2D WO ) nanosheets and achieved hydrocracking of high-density polyethylene (HDPE) waste at 200-250 °C with a liquid fuel (C ) formation rate up to 1456 g ⋅ g ⋅ h . The reaction pathway over the bifunctional 2D Pt/WO is elucidated by quasi-operando transmission infrared spectroscopy, where (I) well-dispersed Pt immobilized on 2D WO nanosheets trigger the dissociation of hydrogen; (II) adsorption of PE and activation of C-C cleavage on WO are through the formation of C=O/C=C intermediates; (III) intermediates are converted to alkane products by the dissociated H. Our study directly illustrates the synergistic role of bifunctional Pt/WO catalyst in the hydrocracking of HDPE, paving the way for the development of high-performance catalysts with optimized chemical and morphological properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202305644 | DOI Listing |
J Colloid Interface Sci
August 2025
School of Energy and Power Engineering, Beihang University, Beijing 100191, China.
Developing pH-universal hydrogen evolution reaction (HER) electrocatalysts demands the simultaneous optimization of water dissociation kinetics and hydrogen adsorption. Herein, a CuCo/CoWO heterostructure with an area of 600 cm was fabricated via a facile one-step electrodeposition strategy. It only needs 193.
View Article and Find Full Text PDFGMS Hyg Infect Control
July 2025
Department of Basic Sciences, Faculty of Pharmacy and Pharmaceutical sciences, Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
Background And Objectives: Colonization of pregnant women by can lead to intrauterine infections after childbirth and potentially life-threatening infections in newborns. The current effectiveness of available antimicrobials is decreasing, posing a serious threat. Hence, there is an urgent requirement to develop novel categories of antimicrobial agents that can efficiently and swiftly eradicate these infections.
View Article and Find Full Text PDFNanoscale
August 2025
Department of Engineering, University of Cambridge, JJ Thomson Avenue, CB3 0FA, Cambridge, UK.
We present a highly resource-efficient Close-Space Sublimation (CSS) approach, along with versatile one-step and two-step process designs, for the controlled synthesis of a wide range of tungsten (sub)oxide (WO) and tungsten disulfide (WS) nanostructures. By applying a simple sublimation model and leveraging graded CSS flux profiles in conjunction with experimentation, we accelerate process discovery and establish CSS flux and substrate temperature as key parameters governing nanostructural formation. Our CSS methodology enables the synthesis of W (sub)oxide structures within process times of less than 10 minutes, a significant improvement over the hour-long durations typically required in conventional hot-wall furnace systems.
View Article and Find Full Text PDFRSC Adv
August 2025
Advanced Materials and Intelligent Technologies Higher Education and Industrial Cooperation Centre, University of Miskolc Miskolc H-3515 Hungary.
Microbial contamination in drinking water continues to be a significant global issue due to its direct effects on human health, particularly in areas with insufficient sanitation or deteriorating infrastructure. Conventional treatment systems frequently encounter challenges in fully eliminating pathogenic bacteria, underscoring the pressing necessity for innovative, energy-efficient filtration technology to ensure universal access to clean drinking water. In this regard, numerous reconsidered membrane technologies and filtration solutions have been developed and published recently.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, PR China. Electronic address:
The limited selectivity of metal oxide semiconductor (MOS) gas sensors poses a significant challenge in accurately identifying volatile organic compounds (VOCs) within industrial environments. Here, platinum-modified tungsten oxide (Pt/WO) composite was successfully prepared through in-situ reduction, which not only possesses superior gas-sensing performance towards ppm-level triethylamine but also achieves robust humidity resistance and long-term stability. Benefiting from the catalytic sensitization of noble metal, the as-fabricated Pt/WO sensor exhibits improved sensitivity towards triethylamine as compared with the pristine tungsten oxide (WO) sensor.
View Article and Find Full Text PDF