Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

All multicellular organisms host a diverse microbiome composed of microbial pathogens, mutualists, and commensals, and changes in microbiome diversity or composition can alter host fitness and function. Nonetheless, we lack a general understanding of the drivers of microbiome diversity, in part because it is regulated by concurrent processes spanning scales from global to local. Global-scale environmental gradients can determine variation in microbiome diversity among sites, however an individual host's microbiome also may reflect its local micro-environment. We fill this knowledge gap by experimentally manipulating two potential mediators of plant microbiome diversity (soil nutrient supply and herbivore density) at 23 grassland sites spanning global-scale gradients in soil nutrients, climate, and plant biomass. Here we show that leaf-scale microbiome diversity in unmanipulated plots depended on the total microbiome diversity at each site, which was highest at sites with high soil nutrients and plant biomass. We also found that experimentally adding soil nutrients and excluding herbivores produced concordant results across sites, increasing microbiome diversity by increasing plant biomass, which created a shaded microclimate. This demonstration of consistent responses of microbiome diversity across a wide range of host species and environmental conditions suggests the possibility of a general, predictive understanding of microbiome diversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267103PMC
http://dx.doi.org/10.1038/s41467-023-39179-wDOI Listing

Publication Analysis

Top Keywords

microbiome diversity
40
soil nutrients
16
microbiome
12
plant biomass
12
diversity
10
plant microbiome
8
plant
5
soil
5
globally consistent
4
consistent response
4

Similar Publications

The relationship between, and joint selection on, a host and its microbes-the holobiont-can impact evolutionary and ecological outcomes of the host and its microbial community. We develop an agent-based modelling framework for understanding the ecological dynamics of hosts and their microbiomes. Our model incorporates numerous microbial generations per host generation allowing selection on both host and microbes.

View Article and Find Full Text PDF

Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level.

View Article and Find Full Text PDF

Roots: metabolic architects of beneficial microbiome assembly.

Plant Physiol

September 2025

Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht 3508 TB, the Netherlands.

The increasing demand for sustainable agricultural practices has driven a renewed interest in plant-microbiome interactions as a basis for the next "green revolution." Central to these interactions are root-derived metabolites that act as mediators of microbial recruitment and function. Plants exude a chemically diverse array of compounds that influence the assembly, composition, and stability of the root microbiome.

View Article and Find Full Text PDF

Capsaicin exhibits diverse bioactivities, including anti-inflammatory, antioxidant, and modulation of the intestinal microbiota. The objective of this study was to investigate the effects of different doses of dietary capsaicin supplementation on the production performance, egg quality and intestinal health of laying hens. A total of 480 forty-week-old Hy-Line Brown laying hens with similar body condition and comparable egg production rates were randomly divided into four treatment groups with 6 replicates of 20 hens each, and each group was offered diets supplemented with 0, 120, 240 or 360 mg/kg capsaicin for 8 weeks.

View Article and Find Full Text PDF

The gut commensal attenuates indole-AhR signaling and restores ASD-like behaviors with BTBR mice.

Front Microbiol

August 2025

State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.

Autism spectrum disorders (ASD), a group of neurodevelopmental disorders characterized by the core symptoms of impaired social communication and stereotyped behaviors, is strongly associated with dysregulated microbiota-gut-brain axis. Emerging evidence suggests that , which showed reduced abundance in ASD cohorts, holds therapeutic potential, though its interaction with host remain unexplored. Here, we investigated the efficacy and molecular basis of 4P-15 (4P-15) in BTBR /J (BTBR) mice, an idiopathic ASD mouse model.

View Article and Find Full Text PDF