98%
921
2 minutes
20
This study aimed to investigate the structural and functional changes in polyhydroxy alcohol-mediated curing on pork myofibrillar proteins (MP). The results obtained from total sulfhydryl groups, surface hydrophobicity, fluorescence and Raman spectroscopies, and solubility demonstrated that the polyhydroxy alcohols (especially xylitol) significantly modified the MP tertiary structure, making this structure more hydrophobic and tighter. However, no significant differences were detected in the secondary structure. Furthermore, the thermodynamic analysis revealed that polyhydroxy alcohols could develop an amphiphilic interfacial layer on the MP surface, significantly increasing the denaturation temperature and enthalpy of denaturation (P < 0.05). On the other hand, the molecular docking and dynamics simulations showed that polyhydroxy alcohols interact with actin mainly through hydrogen bonds and van der Waals forces. Therefore, this could help reduce the effect of high-content salt ions on MP denaturation and improve the cured meat quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2023.113012 | DOI Listing |
Neural Netw
September 2025
School of Mathematics and Information Science, Guangxi University, Nanning, 530004, China. Electronic address:
This study presents a novel variable gain intermittent boundary control (VGIBC) approach for stabilizing delayed stochastic reaction-diffusion Cohen-Grossberg neural networks (SRDCGNN). In contrast to traditional constant gain intermittent boundary control (CGIBC) methods, the proposed VGIBC framework dynamically adjusts the control gain based on the operational duration within each control cycle, thereby improving adaptability to variations in work interval lengths. The time-varying control gain is designed using a piecewise interpolation method across work intervals, defined by a finite set of static gain matrices.
View Article and Find Full Text PDFNeural Netw
September 2025
School of Electronic Science and Engineering, Nanjing University, China. Electronic address:
The Segment Anything Model (SAM) is a cornerstone of image segmentation, demonstrating exceptional performance across various applications, particularly in autonomous driving and medical imaging, where precise segmentation is crucial. However, SAM is vulnerable to adversarial attacks that can significantly impair its functionality through minor input perturbations. Traditional techniques, such as FGSM and PGD, are often ineffective in segmentation tasks due to their reliance on global perturbations that overlook spatial nuances.
View Article and Find Full Text PDFJ Biomech
August 2025
Lampe Joint Department of Biomedical Engineering, UNC Chapel Hill & NC State University, Chapel Hill, NC, USA. Electronic address:
Walking is essential for maintaining independence and quality of life, yet aging may impair the neuromuscular function required for stable gait over time. This study sought to quantify age-related differences in step-to-step control during prolonged walking using detrended fluctuation analysis (DFA). We hypothesized that step-to-step changes in step length and step width would exhibit reduced temporal persistence over time, with more pronounced effects in older than in younger adults.
View Article and Find Full Text PDFFood Chem
September 2025
Nantong Food and Drug Supervision and Inspection Center, Nantong 226001, PR China.
Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.
View Article and Find Full Text PDF