Structural and functional changes on polyhydroxy alcohol-mediated curing pork myofibrillar protein: Experimental and molecular simulation investigations.

Food Res Int

School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China.

Published: August 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to investigate the structural and functional changes in polyhydroxy alcohol-mediated curing on pork myofibrillar proteins (MP). The results obtained from total sulfhydryl groups, surface hydrophobicity, fluorescence and Raman spectroscopies, and solubility demonstrated that the polyhydroxy alcohols (especially xylitol) significantly modified the MP tertiary structure, making this structure more hydrophobic and tighter. However, no significant differences were detected in the secondary structure. Furthermore, the thermodynamic analysis revealed that polyhydroxy alcohols could develop an amphiphilic interfacial layer on the MP surface, significantly increasing the denaturation temperature and enthalpy of denaturation (P < 0.05). On the other hand, the molecular docking and dynamics simulations showed that polyhydroxy alcohols interact with actin mainly through hydrogen bonds and van der Waals forces. Therefore, this could help reduce the effect of high-content salt ions on MP denaturation and improve the cured meat quality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113012DOI Listing

Publication Analysis

Top Keywords

structural functional
8
functional changes
8
changes polyhydroxy
8
polyhydroxy alcohol-mediated
8
alcohol-mediated curing
8
curing pork
8
pork myofibrillar
8
polyhydroxy alcohols
8
polyhydroxy
4
myofibrillar protein
4

Similar Publications

This study presents a novel variable gain intermittent boundary control (VGIBC) approach for stabilizing delayed stochastic reaction-diffusion Cohen-Grossberg neural networks (SRDCGNN). In contrast to traditional constant gain intermittent boundary control (CGIBC) methods, the proposed VGIBC framework dynamically adjusts the control gain based on the operational duration within each control cycle, thereby improving adaptability to variations in work interval lengths. The time-varying control gain is designed using a piecewise interpolation method across work intervals, defined by a finite set of static gain matrices.

View Article and Find Full Text PDF

Region-guided attack on the segment anything model.

Neural Netw

September 2025

School of Electronic Science and Engineering, Nanjing University, China. Electronic address:

The Segment Anything Model (SAM) is a cornerstone of image segmentation, demonstrating exceptional performance across various applications, particularly in autonomous driving and medical imaging, where precise segmentation is crucial. However, SAM is vulnerable to adversarial attacks that can significantly impair its functionality through minor input perturbations. Traditional techniques, such as FGSM and PGD, are often ineffective in segmentation tasks due to their reliance on global perturbations that overlook spatial nuances.

View Article and Find Full Text PDF

Age-related differences in the step-to-step control of foot placement during prolonged walking.

J Biomech

August 2025

Lampe Joint Department of Biomedical Engineering, UNC Chapel Hill & NC State University, Chapel Hill, NC, USA. Electronic address:

Walking is essential for maintaining independence and quality of life, yet aging may impair the neuromuscular function required for stable gait over time. This study sought to quantify age-related differences in step-to-step control during prolonged walking using detrended fluctuation analysis (DFA). We hypothesized that step-to-step changes in step length and step width would exhibit reduced temporal persistence over time, with more pronounced effects in older than in younger adults.

View Article and Find Full Text PDF

Different starch crystal structures significantly influence meat product quality, though their specific impacts on myofibrillar protein (MP) functionality remain unclear despite industry demand for optimized ingredients. This study compared how potato, corn, mung bean, and pea starches affect MP properties in minced pork. Our findings reveal that starch-protein interactions fundamentally regulate MP gel and emulsion properties through the following mechanisms: First, starch promotes protein aggregation by enhancing hydrophobic interactions and disulfide bond formation, affecting gel network crosslinking.

View Article and Find Full Text PDF

Integration of multi-omics resources reveals genetic features associated with environmental adaptation in the Wuzhishan pig genome.

J Therm Biol

September 2025

Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:

In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.

View Article and Find Full Text PDF