Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Not least because it is adaptable to a variety of geographies and climates, potato (Solanum tuberosum L.) is grown across much of the world. Pigmented potato tubers have been found to contain large quantities of flavonoids, which have various functional roles and act as antioxidants in the human diet. However, the effect of altitude on the biosynthesis and accumulation of flavonoids in potato tubers is poorly characterized. Here we carried out an integrated metabolomic and transcriptomic study in order to evaluate how cultivation at low (800 m), moderate (1800 m), and high (3600 m) altitude affects flavonoid biosynthesis in pigmented potato tubers. Both red and purple potato tubers grown at a high altitude contained the highest flavonoid content, and the most highly pigmented flesh, followed by those grown at a low altitude. Co-expression network analysis revealed three modules containing genes which were positively correlated with altitude-responsive flavonoid accumulation. The anthocyanin repressors StMYBATV and StMYB3 exhibited a significant positive relationship with altitude-responsive flavonoid accumulation. The repressive function of StMYB3 was further verified in tobacco flowers and potato tubers. The results presented here add to the growing body of knowledge regarding the response of flavonoid biosynthesis to environmental conditions, and should aid in efforts to develop novel varieties of pigmented potatoes for use across different geographies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.112997DOI Listing

Publication Analysis

Top Keywords

potato tubers
24
flavonoid accumulation
12
analysis revealed
8
pigmented potato
8
flavonoid biosynthesis
8
altitude-responsive flavonoid
8
potato
7
flavonoid
6
tubers
6
integrated transcriptomic
4

Similar Publications

Quaternary ammonium cationic surfactants target Vfm quorum sensing to suppress the virulence of rice pathogen Dickeya oryzae.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

The rice foot rot disease caused by Dickeya oryzae is an important bacterial disease that could cause tremendous economic losses. The virulence factor modulating cluster (Vfm) quorum sensing (QS) system, a major virulence regulatory mechanism conserved in the Dickeya genus, controls the production of zeamines and various extracellular cell wall degradation enzymes in D. oryzae.

View Article and Find Full Text PDF

The present study aimed to determine the effects of potato cultivars, processing methods, and processing conditions on acrylamide formation in fresh-cut potato chips. Tubers of five potato cultivars (Daxiyang, Shiyan1, V7, Youjin885, Zao35) were processed into potato chips using five methods (pan-cooking, deep-frying, oven-baking, microwaving, and air-frying). Among the five cultivars, tubers of potato Youjin885 were identified as the most suitable cultivar for producing potato chips with the lowest acrylamide and its precursor contents.

View Article and Find Full Text PDF

While plants adapt to fluctuating phosphorus (P) availability in soils by enhancing phosphate acquisition or optimizing internal P-utilization, the spatiotemporal dynamics of these responses, particularly in crops, remain poorly understood. This study systematically investigated how and when potato organs respond to fluctuating P availability across different developmental stages using transcriptomic, metabolomic, and physiological analyses of leaves, roots, and tubers. Transcriptomic data revealed dynamic, organ- and stage-specific responses to P-deficiency, with the highest number of differentially expressed genes in leaves before tuberization and in roots during tuberization.

View Article and Find Full Text PDF

Potato (Solanum tuberosum L.) is a crucial global food crop, but high temperatures inhibit tuberization and reduce yield. To investigate heat tolerance genetics, a crossing population was created using the cultivars Annabelle (early tuber-forming, moderately heat-tolerant) and Camel (mid-early tuber-forming, heat-sensitive).

View Article and Find Full Text PDF

Phytosanitary Challenges and Solutions for Roots and Tubers in the Tropics.

Annu Rev Phytopathol

September 2025

Department of Plant Pathology and Global Food Systems Institute, University of Florida, Gainesville, Florida, USA.

Vegetatively propagated crops such as cassava, potato, sweetpotato, and yam, or roots and tubers (RTs), play a major role in food security in low- and middle-income countries, yet phytosanitary issues in the tropics lead to substantial yield and quality losses. Challenges to production include institutional limitations that prevent effective responses and potential buildup of pathogens during clonal propagation. Addressing these challenges in a climate change context and diverse sociocultural environments requires a multifaceted approach, including improving access and availability to clean seed by strengthening seed systems; breeding for host resistance and disseminating resistant varieties; strengthening on-farm seed management; and designing effective policies and regulations to deal with seedborne diseases.

View Article and Find Full Text PDF