Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Huanglongbing (HLB), the most prevalent citrus disease worldwide, is responsible for substantial yield and economic losses. Phytobiomes, which have critical effects on plant health, are associated with HLB outcomes. The development of a refined model for predicting HLB outbreaks based on phytobiome markers may facilitate early disease detection, thus enabling growers to minimize damages. Although some investigations have focused on differences in the phytobiomes of HLB-infected citrus plants and healthy ones, individual studies are inappropriate for generating common biomarkers useful for detecting HLB on a global scale. In this study, we therefore obtained bacterial information from several independent datasets representing hundreds of citrus samples from six continents and used these data to construct HLB prediction models based on 10 machine learning algorithms. We detected clear differences in the phyllosphere and rhizosphere microbiomes of HLB-infected and healthy citrus samples. Moreover, phytobiome alpha diversity indices were consistently higher for healthy samples. Furthermore, the contribution of stochastic processes to citrus rhizosphere and phyllosphere microbiome assemblies decreased in response to HLB. Comparison of all constructed models indicated that a random forest model based on 28 bacterial genera in the rhizosphere and a bagging model based on 17 bacterial species in the phyllosphere predicted the health status of citrus plants with almost 100% accuracy. Our results thus demonstrate that machine learning models and phytobiome biomarkers may be applied to evaluate the health status of citrus plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258322PMC
http://dx.doi.org/10.3389/fpls.2023.1129508DOI Listing

Publication Analysis

Top Keywords

citrus plants
16
citrus
8
citrus samples
8
machine learning
8
model based
8
based bacterial
8
health status
8
status citrus
8
hlb
6
accurate prediction
4

Similar Publications

The Citrus Under Protective Screen is a novel production system implemented to grow citrus free of huanglongbing disease vectored by Asian citrus psyllid, Diaphorina citri. Other significant pests such as mites, scales, thrips, mealybugs, and leafminers, as well as parasitoids and small predators, have been identified from Citrus Under Protective Screen and require management. Chrysomphalus aonidum (L.

View Article and Find Full Text PDF

Abscisic Acid and Calcium Signals Convergently Regulate Sugar Accumulation by Orchestrating the SRK2A/CIPK6-ABI5-TST2 Module in Citrus.

Plant Biotechnol J

September 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China.

Abscisic acid (ABA) and calcium respectively work as crucial plant hormones and second signalling molecules in the regulation of fruit development and quality formation, including the sugar content and flavour quality. However, the regulatory mechanisms of fruit sugar accumulation arising from the interaction between ABA and calcium have not yet been fully elucidated. Here, we show that the application of ABA or calcium enhances sugar accumulation in sweet orange (Citrus sinensis) fruit, accompanied by upregulation of the expression level of tonoplast sugar transporter 2 (CsTST2), which mediates the transport of sugars into the vacuole.

View Article and Find Full Text PDF

Feeding on the nutrients from fruits and flowers is vital for mosquitoes and increases their lifespan, reproduction, and flight activity. Olfaction is a key sensory modality in mediating mosquito responses to nutrient sources. Previous studies have demonstrated that fruits and flowers can vary in attractiveness to mosquitoes, with some sources preferred over others.

View Article and Find Full Text PDF

Effects of orange variety on the physiochemical properties of self-secretory extracellular vesicle and its application potential as nutrient-rich beverage.

Food Res Int

November 2025

State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, China. Electronic address:

Plant-derived extracellular vesicles have presented great potential in drug and/or nutrition delivery, but it is still unclear whether the variety affects the physicochemical properties of plant derived extracellular vesicles. In this work, the extracellular vesicles from various oranges were first characterized, including navel orange juice (NOJ), green orange juice (GOJ), bingtang orange juice (BTOJ) and blood orange juice (BOJ). The results exhibited obvious distinctions of extracellular vesicles among different oranges, such as vesicle concentration, surface potential, lipid composition, protein content and so on.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF