Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Sustainable strategies for enteric methane (CH) mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure. The present study aimed to investigate the effects of dietary xylooligosaccharides (XOS) and exogenous enzyme (EXE) supplementation on milk production, nutrient digestibility, enteric CH emissions, energy utilization efficiency of lactating Jersey dairy cows. Forty-eight lactating cows were randomly assigned to one of 4 treatments: (1) control diet (CON), (2) CON with 25 g/d XOS (XOS), (3) CON with 15 g/d EXE (EXE), and (4) CON with 25 g/d XOS and 15 g/d EXE (XOS + EXE). The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period. The enteric CO and CH emissions and O consumption were measured using two GreenFeed units, which were further used to determine the energy utilization efficiency of cows.

Results: Compared with CON, cows fed XOS, EXE or XOS + EXE significantly (P < 0.05) increased milk yield, true protein and fat concentration, and energy-corrected milk yield (ECM)/DM intake, which could be reflected by the significant improvement (P < 0.05) of dietary NDF and ADF digestibility. The results showed that dietary supplementation of XOS, EXE or XOS + EXE significantly (P < 0.05) reduced CH emission, CH/milk yield, and CH/ECM. Furthermore, cows fed XOS demonstrated highest (P < 0.05) metabolizable energy intake, milk energy output but lowest (P < 0.05) of CH energy output and CH energy output as a proportion of gross energy intake compared with the remaining treatments.

Conclusions: Dietary supplementary of XOS, EXE or combination of XOS and EXE contributed to the improvement of lactation performance, nutrient digestibility, and energy utilization efficiency, as well as reduction of enteric CH emissions of lactating Jersey cows. This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10258951PMC
http://dx.doi.org/10.1186/s40104-023-00873-wDOI Listing

Publication Analysis

Top Keywords

energy utilization
12
utilization efficiency
12
exogenous enzyme
8
milk production
8
enteric methane
8
dairy cows
8
enteric emissions
8
con 25 g/d
8
25 g/d xos
8
15 g/d exe
8

Similar Publications

Research Progress of Surfactant-Free Microemulsions: A Review.

Crit Rev Anal Chem

September 2025

Department of Civil Engineering, Architecture and Engineering, Northeast Petroleum University, Daqing, China.

Surfactant is usually considered the key component to form microemulsion. surfactant-based microemulsion (SBME) can also be called traditional microemulsion. It has a wide range of applications.

View Article and Find Full Text PDF

Tralopyril (TP), a representative bromopyrrolonitrile, functions as a broad-spectrum insecticide, raising growing concerns about its potential impact on aquatic organisms and human intestinal health. However, the key targets and toxicity mechanisms underlying TP-induced enteritis remain unclear. In this study, we utilized network toxicology combined with molecular docking to comprehensively explore the potential molecular mechanisms underlying TP-induced enteritis.

View Article and Find Full Text PDF

First synergistic application of nanocarrier-loaded metaflumizone and parasitic wasps: A high-efficiency green pest control strategy.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, PR China. Electronic address:

The improper use of chemical pesticides threatens ecosystems and human health, highlighting the need for sustainable alternatives. Nano-pesticides and biological control agents offer a solution, and their combination can reduce pesticide usage and improve pest control efficacy. This study utilized a star polycation (SPc) to prepare a metaflumizone nano-pesticide and combined it with the egg parasitoid (Telenomus remus) for synergistic pest management.

View Article and Find Full Text PDF

Host-microbe synergy in pesticide resilience: Rhodococcus-driven fitness compensation in chlorpyrifos-stressed Binodoxys communis.

Pestic Biochem Physiol

November 2025

Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu

Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.

View Article and Find Full Text PDF

Rhizoctonia solani (R. solani) is a phytopathogen that extensively affects crops, leading to plant diseases and reducing crop yields, which jeopardizes food security. β-pinene is a major component of turpentine oil and serves as a lead compound for developing new fungicides.

View Article and Find Full Text PDF