Modular Software for Generating and Modeling Diverse Polymer Databases.

J Chem Inf Model

Biological Physics and Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Machine learning methods offer the opportunity to design new functional materials on an unprecedented scale; however, building the large, diverse databases of molecules on which to train such methods remains a daunting task. Automated computational chemistry modeling workflows are therefore becoming essential tools in this data-driven hunt for new materials with novel properties, since they offer a means by which to create and curate molecular databases without requiring significant levels of user input. This ensures that well-founded concerns regarding data provenance, reproducibility, and replicability are mitigated. We have developed a versatile and flexible software package, PySoftK (Python Soft Matter at King's College London) that provides flexible, automated computational workflows to create, model, and curate libraries of polymers with minimal user intervention. PySoftK is available as an efficient, fully tested, and easily installable Python package. Key features of the software include the wide range of different polymer topologies that can be automatically generated and its fully parallelized library generation tools. It is anticipated that PySoftK will support the generation, modeling, and curation of large polymer libraries to support functional materials discovery in the nanotechnology and biotechnology arenas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302471PMC
http://dx.doi.org/10.1021/acs.jcim.3c00081DOI Listing

Publication Analysis

Top Keywords

functional materials
8
automated computational
8
modular software
4
software generating
4
generating modeling
4
modeling diverse
4
diverse polymer
4
polymer databases
4
databases machine
4
machine learning
4

Similar Publications

High-entropy spinel (FeCoNiMnCr)O nanoparticles supported on carbon nanotubes for enhanced electrochemical seawater oxidation.

Chem Commun (Camb)

September 2025

Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.

View Article and Find Full Text PDF

Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.

View Article and Find Full Text PDF

Bacterial infection in the injured skin may threaten the wound repair and skin regeneration owing to aggravated inflammation. The multifunctional dressings with persistent antibacterial activity and improved anti-inflammatory capability are urgently required. Herein, a type of heterogeneous zinc/catechol-derived resin microspheres (Zn/CFRs) composed of zinc ions (Zn) and zinc oxide (ZnO) nanoparticles was developed to impart the methacrylamide chitosan (CSMA)-oxidized hyaluronic acid (OHA) hydrogel with a persistent Zn release behavior.

View Article and Find Full Text PDF

Construction of Silver-Calcium Micro-Galvanic Cell on Titanium for Immunoregulation Osteogenesis.

BME Front

September 2025

State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening.

View Article and Find Full Text PDF

Recent Advances in Metal-Organic Frameworks for Electromagnetic Wave Absorption.

Research (Wash D C)

September 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.

View Article and Find Full Text PDF