98%
921
2 minutes
20
Metasurfaces with tunable microwave transmission amplitude and broadband high optical transparency hold great promise for the next generation of optically transparent and smart electromagnetic transmission devices. In this study, a novel and electrically tunable metasurface with high optical transparency in the visible-infrared broadband is proposed and fabricated by integrating meshed electric-LC resonators and patterned VO. Simulations and experiments demonstrate that the designed metasurface has a normalized transmittance greater than 88% over a wide wavelength range of 380-5000 nm, and the transmission amplitude can be continuously tuned from -1.27 to -15.38 dB at 10 GHz under current excitation, indicating significantly limited passband loss and strong electromagnetic shielding capability in the on and off cases, respectively. This study provides a simple, practical, and feasible method for optically transparent metasurfaces with electrically tunable microwave amplitude, paving the way for the application of VO in multiple fields such as intelligent optical windows, smart radomes, microwave communications, and optically transparent electromagnetic stealth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c04030 | DOI Listing |
Mater Horiz
September 2025
College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Advanced Polymer Materials, Chengdu, 610065, Sichuan, China.
Mechanical stimuli-responsive shape transformations, exemplified by mimosa leaves, are widespread in nature, yet remain challenging to realize through facile fabrication in synthetic morphing materials. Herein, we demonstrate stretch-activated shape-morphing enabled by an elastic-plastic bilayer structure assembled dynamic crosslinking. Through dioxaborolane metathesis, a dynamic, crosslinked polyolefin elastomer (POEV) with elasticity and a co-crosslinked POE/paraffin wax blend (POE/PW-V) with tunable plasticity are prepared.
View Article and Find Full Text PDFJ Biomed Opt
September 2025
Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany.
Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.
Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.
RSC Adv
September 2025
Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC C/Sor Juana Inés de la Cruz, 3 Madrid 28049 Spain
Perovskite light-emitting diodes (PeLEDs) have emerged as a promising technology for next-generation display and lighting applications, thanks to their remarkable colour purity, tunability, and ease of fabrication. In this work, we explore the incorporation of plasmonic spherical nanoparticles (NPs) directly embedded into the green-emitting CsPbBr perovskite layer in a PeLED as a strategy to enhance both its optical and electrical properties. We find that plasmonic effects directly boost spontaneous emission while also influencing charge carrier recombination dynamics.
View Article and Find Full Text PDFPNAS Nexus
September 2025
Department of Materials Science and Engineering, Westlake University, Hangzhou 310030, PR China.
Uniform dispersion of carbon nanotubes in a polymer matrix is a prerequisite for high-performance nanotube-based composites. Here, we report an in situ polymerization route to synthesize a range of phenolic composites with high loading of single-wall carbon nanotubes (SWCNTs, >40 wt%) and continuously tunable viscoelasticity. SWCNTs can be directly and uniformly dispersed in cresols through noncovalent charge-transfer interactions without the need for surfactants, and further concentrated before in situ polymerization of the solvent molecules, yielding phenolic composites in the forms of conductive pastes, highly stretchy doughs, and hardened solids with high nanotube loading and much enhanced electrical conductivity (up to 2.
View Article and Find Full Text PDFMed Phys
September 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
Background: In catheter-based radiofrequency ablation (RFA), energy is delivered to heterogeneous thin-walled tissues to induce therapeutic heating. Variations in electrical and mechanical properties of tissue contents have a great effect on outcomes.
Purpose: The objective of this study is to develop models that replicate tissue heterogeneity and visualize ablation zones for effective evaluation and optimization.