Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fruit set is the process by which the ovary develops into a fruit and is an important factor in determining fruit yield. Fruit set is induced by two hormones, auxin and gibberellin, and the activation of their signaling pathways, partly by suppressing various negative regulators. Many studies have investigated the structural changes and gene networks in the ovary during fruit set, revealing the cytological and molecular mechanisms. In tomato (Solanum lycopersicum), SlIAA9 and SlDELLA/PROCERA act as auxin and gibberellin signaling repressors, respectively, and are important regulators of the activity of transcription factors and downstream gene expression involved in fruit set. Upon pollination, SlIAA9 and SlDELLA are degraded, which subsequently activates downstream cascades and mainly contributes to active cell division and cell elongation, respectively, in ovaries during fruit setting. According to current knowledge, the gibberellin pathway functions as the most downstream signal in fruit set induction, and therefore its role in fruit set has been extensively explored. Furthermore, multi-omics analysis has revealed the detailed dynamics of gene expression and metabolites downstream of gibberellins, highlighting the rapid activation of central carbon metabolism. This review will outline the relevant mechanisms at the molecular and metabolic levels during fruit set, particularly focusing on tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erad214DOI Listing

Publication Analysis

Top Keywords

fruit set
32
fruit
11
set
8
auxin gibberellin
8
gene expression
8
molecular hormonal
4
hormonal metabolic
4
metabolic mechanisms
4
mechanisms fruit
4
set ovary-to-fruit
4

Similar Publications

Auxin Gradients Determine Reproductive Development in Pea (Pisum sativum).

Physiol Plant

September 2025

Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.

Auxins are involved in the regulation of fruit set and development; however, the role of IAA is unclear in pea (Pisum sativum) since the endogenous auxin 4-Cl-IAA appears to be the auxin stimulating ovary (pericarp) growth. To further understand the role of auxins during fruit development, auxin localization, quantitation, transport, and gene expression activity were assessed in this model legume species. IAA levels and auxin activity (DR5::β-Glucuronidase [GUS] staining and enzyme activity) were substantially reduced in the pericarp vascular tissues, pedicels, and peduncles of fruit upon seed removal, reflecting auxin transport streams derived from the seeds through these tissues.

View Article and Find Full Text PDF

Plant growth regulators (PGRs) include natural and synthetic plant phytohormones and other substances with the capacity to shape one or more aspects of plant growth and development at small concentrations. PGRs are commonly utilized in tree fruit and table grape production to reduce fruit set (thinning) and increase fruit size, coloration, and quality. However, use of PGRs in the production of berry crops, such as blueberry, is less common despite the abundance of production issues and the breadth of PGRs generally registered for fruit crops.

View Article and Find Full Text PDF

Extrafloral nectaries (EFNs) are specialized plant glands that secrete nectar but are not related to pollination. Several ants feed on EFNs and, in exchange, they often attack herbivores, reducing the consumption of leaf tissue and floral parts, and enhancing plant performance. Although most empirical studies and reviews have demonstrated that ant visitation benefits EFN-bearing plants, many others have failed to show ants as protective partners.

View Article and Find Full Text PDF

Interspecific hybrids with different genomes from their parents often result in hybrid sterility due to meiotic failure. This is a typical example of reproductive isolation that limits interspecific hybridization. Although a few progenies can be obtained in such cases, the inheritance pattern of fertility has not yet been studied in detail.

View Article and Find Full Text PDF

Bamboo usually undergoes a prolonged vegetative growth period for several decades. Additionally, not all bamboo species produce seeds, and the regulatory mechanisms governing embryogenic callus formation remain unclear, which constrains molecular breeding progress in bamboo. Here, we used buds of Bambusa changningensis Yi et B.

View Article and Find Full Text PDF