Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tailoring the interface between organic semiconductor (OSC) and ferromagnetic (FM) electrodes, that is, the spinterface, offers a promising way to manipulate and optimize the magnetoresistance (MR) ratio of the organic spin valve (OSV) devices. However, the non-destructive in situ regulation method of spinterface is seldom reported, limiting its theoretical research and further application in organic spintronics. (La Pr ) Ca MnO (LPCMO), a recently developed FM material, exhibits a strong electronic phase separation (EPS) property, and can be employed as an effective in situ spinterface adjuster. Herein, we fabricated a LPCMO-based polymer spin valve with a vertical configuration of LPCMO/poly(3-hexylthiophene-2,5-diyl) (P3HT)/Co, and emphasized the important role of LPCMO/P3HT spinterface in MR regulation. A unique competitive spin-scattering mechanism generated by the EPS characteristics of LPCMO inside the polymer spin valve was discovered by abstracting the anomalous non-monotonic MR value as a function of pre-set magnetic field (B ) and temperature (T). Particularly, a record-high MR ratio of 93% was achieved in polymer spin valves under optimal conditions. These findings highlight the importance of interdisciplinary research between organic spintronics and EPS oxides and offer a novel scenario for multi-level storage via spinterface manipulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202303375DOI Listing

Publication Analysis

Top Keywords

polymer spin
16
spin valve
16
electronic phase
8
organic spintronics
8
spinterface
6
spin
5
situ optimization
4
optimization spinterface
4
polymer
4
spinterface polymer
4

Similar Publications

Prolonging All-Optical Molecular Electron Spin Coherence in the Tissue Transparency Window.

J Am Chem Soc

September 2025

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Coherent electron spin states within paramagnetic molecules hold significant potential for microscopic quantum sensing. However, all-optical coherence measurements amenable to high spatial and temporal resolution under ambient conditions remain a significant challenge. Here we conduct room-temperature, picosecond time-resolved Faraday ellipticity/rotation (TRFE/R) measurements of the electron spin decoherence time in [IrBr].

View Article and Find Full Text PDF

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSCs) show great promise for personalized cell-based medicine, as they can be derived from easily accessible somatic cells and differentiated into all three germ layers without ethical concerns. This requires mass production of hiPSCs in 3D. However, contemporary methods for 3D culture result in hiPSC spheroids with significant size heterogeneity that is undesired for controlled differentiation and require the use of a high concentration of Rho-associated kinase inhibitor (RI) to improve the cell viability.

View Article and Find Full Text PDF

Novel ultrafine Pt@Fe-MIL-101 nanozyme enables robust aflatoxin B1 immunoassay in diverse marine and agricultural systems.

Anal Chim Acta

November 2025

State Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Detection of Veterinary Drug Residues and Illegal Additives of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China. Electronic address: haiyang

Background: Aflatoxin B1 (AFB1) stands among the most toxic naturally occurring substances, with its acute toxicity characterized by the induction of acute hepatic necrosis, hemorrhage, and even fatal outcomes, thereby posing a profound threat to human health. Contamination of AFB1 in food commodities can arise at multiple stages throughout the production cycle, including cultivation, storage, and processing. This contamination cascade permeates the entire food supply chain, encompassing primary agricultural products as well as a diverse range of processed food items.

View Article and Find Full Text PDF