Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ponicidin (PON), a diterpenoid extracted from the Chinese herb Rubescens, has been reported to be a therapeutic cytotoxic drug for the treatment of various types of human cancers. According to the statistics, the incidence of malignant melanoma is increasing year by year and the degree of malignancy is extremely high, so early treatment is very important. In the present study, we demonstrated the antitumor effect of PON on melanoma in vitro and in vivo. Cell Counting Kit-8 (CCK-8) assay was used to detect cell proliferation rate, crystal violet staining and TdT-mediated dUTP Nick-End Labeling (TUNEL) kit was used to detect cell apoptosis, and Western blotting was used to detect the expression of apoptotic indicators and related signaling pathway proteins. Finally, the tumor-bearing mouse model was constructed. Treating melanoma B16F0 and B16F10 cells with different concentrations (10 and 20 µmol/L) of PON magnificantly decreased cell viability. In addition, PON significantly activates the expression of pro-apoptotic proteins, including cleaved-poly(ADP-ribose)polymerase (PARP) (cl.PARP), Bak and Bim proteins, and also inhibits the expression of anti-apoptotic protein Mcl-1 and nuclear transcription factor nuclear factor-kappaB (NF-κB) in melanoma cells. Lastly, PON effectively inhibits the growth of mouse xenografts in vivo. These results suggest that PON induces apoptosis of melanoma cells may be achieved by inhibiting NF-κB signal pathway, but the specific mechanism remains to be further elucidated. Taken together, PON may serve as an effective potential drug for the treatment of melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.b22-00888DOI Listing

Publication Analysis

Top Keywords

induces apoptosis
8
inhibiting nf-κb
8
signaling pathway
8
drug treatment
8
detect cell
8
melanoma cells
8
melanoma
7
pon
7
ponicidin induces
4
apoptosis murine
4

Similar Publications

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF

Epilepsy is a common chronic nervous system disease that threatens human health. However, the role of FOXC1 and its relations with pyroptosis have not been fully studied in epilepsy. Sprague-Dawley rats were obtained for constructing temporal lobe epilepsy (TLE) models.

View Article and Find Full Text PDF

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

c-Jun N-terminal kinases (JNKs), a subfamily of mitogen-activated protein kinases (MAPKs), are key mediators of cellular responses to environmental stress, inflammation, and apoptotic signals. The three isoforms-JNK1, JNK2, and JNK3 exhibit both overlapping and isoform-specific functions. While JNK1 and JNK2 are broadly expressed across tissues and regulate immune signaling, cell proliferation, and apoptosis, JNK3 expression is largely restricted to the brain, heart, and testis, where it plays a crucial role in neuronal function and survival.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF