The Function of T Cell Immunity in Lymphedema: A Comprehensive Review.

Lymphat Res Biol

Department of Oncoplastic and Reconstructive Breast Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lymphedema is a debilitating disease characterized by extremity edema, fibroadipose deposition, impaired lymphangiogenesis, and dysfunctional lymphatics, often with lymphatic injury secondary to the treatment of malignancies. Emerging evidence has shown that immune dysfunction regulated by T cells plays a pivotal role in development of lymphedema. Specifically, Th1, Th2, Treg, and Th17 cells have been identified as critical regulators of pathological changes in lymphedema. In this review, our aim is to provide an overview of the current understanding of the roles of CD4+ T cells, including Th1, Th2, Treg, and Th17 subsets, in the progression of lymphedema and to discuss associated therapies targeting T cell inflammation for management of lymphedema.

Download full-text PDF

Source
http://dx.doi.org/10.1089/lrb.2023.0002DOI Listing

Publication Analysis

Top Keywords

th1 th2
8
th2 treg
8
treg th17
8
lymphedema
6
function cell
4
cell immunity
4
immunity lymphedema
4
lymphedema comprehensive
4
comprehensive review
4
review lymphedema
4

Similar Publications

Evaluation of subsp. antigens capable of stimulating host IRG-47 release identifies Mmm604, Mmm605, and Mmm606 as potential subunit vaccine antigens.

Infect Immun

September 2025

National Contagious Bovine Pleuropneumonia Reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Contagious bovine pleuropneumonia (CBPP), caused by subsp. (Mmm), is a devastating cattle disease with high morbidity and mortality, threatening cattle productivity in Sub-Saharan Africa and potentially in parts of Asia. Cross-border livestock trade increases the risk of CBPP introduction or reintroduction.

View Article and Find Full Text PDF

Glyphosate, a widely used herbicide, has raised concerns regarding its impact on human health and the environment due to its widespread and excessive use. Adverse effects on the immune system have been reported. In this study, 26 vineyard workers in Veneto vineyards were examined before and after glyphosate applications to investigate possible immune parameter changes.

View Article and Find Full Text PDF

Role of Splenocytes on T Cells and Its Cytokine Network in Rheumatoid Arthritis.

Crit Rev Immunol

September 2025

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.

View Article and Find Full Text PDF

Interstitial pneumonia via the oropharyngeal route of infection with Encephalitozoon cuniculi.

PLoS Negl Trop Dis

September 2025

Programa de Patologia Ambiental e Experimental, Universidade Paulista (UNIP), São Paulo, Brasil.

Microsporidia causes opportunistic infections in immunosuppressed individuals. Mammals shed these spores of fungi in feces, urine, or respiratory secretions, which could contaminate water and food, thereby reaching the human body and causing infection. The oral route is the most common route of infection, although experiments have demonstrated that intraperitoneal and intravenous routes may also spread infection.

View Article and Find Full Text PDF

HIV-induced gut microbiota dysbiosis perpetuates mucosal barrier disruption and systemic inflammation despite antiretroviral therapy (ART), creating a tumor-permissive microenvironment. This review synthesizes evidence linking HIV-associated microbial alterations to oncogenesis through three convergent metabolic axes: (1) butyrate deficiency impairing epithelial energy metabolism and anti-tumor immunity; (2) tryptophan metabolism dysregulation compromising gut barrier integrity via depletion and -mediated phenylethylamine overproduction; and (3) vitamin B biosynthesis defects disrupting DNA repair and Th1/Th2 balance. Comparative profiling across HIV-associated malignancies-non-Hodgkin lymphoma, cervical cancer, hepatocellular carcinoma, and lung cancer-reveals conserved dysbiotic signatures: depletion of anti-inflammatory taxa (, ) and expansion of pro-inflammatory genera (, ).

View Article and Find Full Text PDF