Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hepatocellular carcinoma (HCC) is a common malignancy affecting many people worldwide. Baicalin is a flavonoid extracted from the dried root of Scutellaria baicalensis Georgi. It can effectively inhibit the occurrence and development of HCC. Nonetheless, the mechanism through which Baicalin inhibits HCC growth and metastasis remain unknown. This work discovered that Baicalin inhibited HCC cell proliferation, invasion, metastasis while inducing cell cycle arrest at the G0/G1 phase and apoptosis. In vivo HCC xenograft results indicated that Baicalin inhibited HCC growth. Western blotting analysis indicated that Baicalin suppressed the expressions of ROCK1, p-GSK-3β, and β-catenin, whereas it up-regulated the expressions of GSK-3β and p-β-catenin. Baicalin also reduced the expressions of Bcl-2, C-myc, Cyclin D1, MMP-9, and VEGFA, while increasing the expression of Bax. Molecular docking revealed that Baicalin docked in the binding site of the ROCK1 agonist, with a binding energy of -9 kcal/mol between the two. In addition, lentivirus-mediated suppression of ROCK1 expression improved the inhibitory effect of Baicalin on the proliferation, invasion, and metastasis of HCC and the expression of proteins associated with ROCK1/GSK-3β/β-catenin signaling pathway. Moreover, restoring ROCK1 expression decreased the anti-HCC efficacy of Baicalin. These findings suggest that Baicalin may decrease HCC proliferation and metastasis by suppressing ROCK1/GSK-3β/β-catenin signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.7873 | DOI Listing |