A Self-Regenerating Artificial Cell, that is One Step Closer to Living Cells: Challenges and Perspectives.

Small Methods

Department of Chemistry and Institute of Biological Interfaces, Sogang University, Seoul, 04107, Republic of Korea.

Published: December 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Controllable, self-regenerating artificial cells (SRACs) can be a vital advancement in the field of synthetic biology, which seeks to create living cells by recombining various biological molecules in the lab. This represents, more importantly, the first step on a long journey toward creating reproductive cells from rather fragmentary biochemical mimics. However, it is still a difficult task to replicate the complex processes involved in cell regeneration, such as genetic material replication and cell membrane division, in artificially created spaces. This review highlights recent advances in the field of controllable, SRACs and the strategies to achieve the goal of creating such cells. Self-regenerating cells start by replicating DNA and transferring it to a location where proteins can be synthesized. Functional but essential proteins must be synthesized for sustained energy generation and survival needs and function in the same liposomal space. Finally, self-division and repeated cycling lead to autonomous, self-regenerating cells. The pursuit of controllable, SRACs will enable authors to make bold advances in understanding life at the cellular level, ultimately providing an opportunity to use this knowledge to understand the nature of life.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202300182DOI Listing

Publication Analysis

Top Keywords

self-regenerating artificial
8
living cells
8
self-regenerating cells
8
proteins synthesized
8
cells
7
self-regenerating
4
artificial cell
4
cell step
4
step closer
4
closer living
4

Similar Publications

Bio-based solutions depend on the application of living organisms to combat current challenges, including marine biofouling, which is characterized by the adhesion and growth of organisms on surfaces at sea. Such solutions traditionally involve single bacterial strains with specific, desirable activities or properties, thereby omitting the advantages conferred by the community context. We propose a novel approach, whereby desirable emergent properties of multispecies communities can be selected, such as those producing a thick and robust biofilm that is impenetrable to settling larvae.

View Article and Find Full Text PDF

Natural bone is a self-regenerating nanocomposite made of proteins and minerals. Such self-regenerative capacity can be negatively affected by certain diseases involving the bone or its surrounding tissues. Our study assesses the ability of bone grafting material to regenerate bone in animals who have artificially created critical-sized defects.

View Article and Find Full Text PDF

The presence of active pharmaceutical ingredients (APIs) in wastewater effluents and natural aquatic systems threatens ecological and human health. While activated carbon-based adsorbents, such as GAC and PAC, are widely used for API removal, they exhibit certain deficiencies, including reduced performance due to the presence of natural organic macromolecules (NOMs) and high regeneration costs. There is growing demand for a robust, stable, and self-regenerative adsorbent designed for API removal in various environments.

View Article and Find Full Text PDF

Self-regenerating trigger waves can spread rapidly through the crowded cytoplasm without diminishing in amplitude or speed, providing consistent, reliable, long-range communication. The macromolecular concentration of the cytoplasm varies in response to physiological and environmental fluctuations, raising the question of how or if trigger waves can robustly operate in the face of such fluctuations. Using Xenopus extracts, we find that mitotic and apoptotic trigger wave speeds are remarkably invariant.

View Article and Find Full Text PDF

There is an arising need for effective wound dressings that retain the bioactivity of a cellular treatment, but without the high costs and complexities associated with manufacturing, storing, and applying cell-based products. As skin wound recovery is a dynamic and complicated process, a significant obstacle to the healing of skin wounds is the lack of an appropriate wound dressing that can imitate the microenvironment of healthy skin and prevent bacterial infection. It requires the well-orchestrated integration of biological and molecular events.

View Article and Find Full Text PDF