98%
921
2 minutes
20
Cultivated beets (Beta vulgaris ssp. vulgaris) constitute important crop plants, in particular sugar beet as an indispensable source of sucrose. Several species of wild beets of the genus Beta with distribution along the European Atlantic coast, Macaronesia, and throughout the Mediterranean area exist. Thorough characterization of beet genomes is required for straightforward access to genes promoting genetic resistance against biotic and abiotic stress. Analysing short-read data of 656 sequenced beet genomes, we identified 10 million variant positions in comparison to the sugar beet reference genome RefBeet-1.2. The main groups of species and subspecies were distinguishable based on shared variation, and the separation of sea beets (Beta vulgaris ssp. maritima) into a Mediterranean and an Atlantic subgroup as suggested by previous studies could be confirmed. Complementary approaches of variant-based clustering were employed based on PCA, genotype likelihoods, tree calculations, and admixture analysis. Outliers suggested the occurrence of inter(sub)specific hybridisation, independently confirmed by different analyses. Screens for regions under artificial selection in the sugar beet genome identified 15 Mbp of the genome as variation-poor, enriched for genes involved in shoot system development, stress response, and carbohydrate metabolism. The resources presented herein will be valuable for crop improvement and wild species monitoring and conservation efforts, and for studies on beet genealogy, population structure and population dynamics. Our study provides a wealth of data for in-depth analyses of further aspects of the beet genome towards a thorough understanding of the biology of this important complex of a crop species and its wild relatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224960 | PMC |
http://dx.doi.org/10.1038/s41598-023-35691-7 | DOI Listing |
Pestic Biochem Physiol
November 2025
State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China. Electronic address:
The beet armyworm, Spodoptera exigua has developed resistance to the commonly used insecticide indoxacarb. Understanding fitness costs and resistance mechanisms to indoxacarb in S. exigua is essential for developing effective field resistance management strategies.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Background: Screening and raising salt-tolerant crops on saline land is an affordable and environmentally friendly alternative. This study investigated the physiological and molecular processes in eight Beta vulgaris and Beta maritima accessions.
Results: A preliminary study was carried out to determine the sublethal concentration of NaCl.
Biochem Biophys Rep
September 2025
Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Curly top disease, caused by Beet Curly Top Virus (BCTV), is a major threat to sugar beet (), resulting in significant yield losses. This study integrates RNA sequencing, gene network analysis, and experimental validation to uncover key regulatory genes involved in plant responses to viral infection. Network analysis identified nine central hub genes associated with fatty acid metabolism, stress adaptation, and transcriptional regulation.
View Article and Find Full Text PDFEnviron Microbiome
August 2025
Department of Rural Land Use, Scotland's Rural College, Aberdeen, AB21 9YA, UK.
Background: Here, we describe AgMicrobiomeBase as an output of the UK Crop Microbiome Cryobank (UKCMCB) project, including details of the underlying meta-barcode sequence-based methods and three microbiome analysis case studies. The UKCMCB links genomic datasets and associated soil metadata with a cryobank collection of samples, for six economically significant crops: fava bean (Vicia faba), oil seed rape (Brassica napus), spring barley (Hordeum vulgare), spring oats (Avena sativa), spring wheat (Triticum aestivum) and sugar beet (Beta vulgaris). The crops were grown in nine agricultural soils from the UK, representing three major soil texture classes.
View Article and Find Full Text PDFBiotechnol Adv
November 2025
Federal University of Pelotas (UFPel), Eliseu Maciel School of Agronomy, Plant Genomics and Breeding Center, Pelotas, Rio Grande do Sul, Brazil. Electronic address:
This review article examines how environmental stress affects plant development by changing their morphological features, physiological processes, biochemical pathways, and gene regulatory mechanisms. Eukaryotic plants face major agricultural challenges because they are stationary, making them constantly susceptible to adverse conditions such as drought, salinity, extreme temperatures, and heavy metal contamination. Key findings highlight the genetic and molecular factors that drive adaptive responses, including the production of osmoprotective and antioxidant compounds that improve stress tolerance.
View Article and Find Full Text PDF