98%
921
2 minutes
20
Mitochondrial dynamics regulate the quality and morphology of mitochondria. Calcium (Ca2+) plays an important role in regulating mitochondrial function. Here, we investigated the effects of optogenetically engineered Ca2+ signaling on mitochondrial dynamics. More specifically, customized illumination conditions could trigger unique Ca2+ oscillation waves to trigger specific signaling pathways. In this study, we found that modulating Ca2+ oscillations by increasing the light frequency, intensity and exposure time could drive mitochondria toward the fission state, mitochondrial dysfunction, autophagy and cell death. Moreover, illumination triggered phosphorylation at the Ser616 residue but not the Ser637 residue of the mitochondrial fission protein, dynamin-related protein 1 (DRP1, encoded by DNM1L), via the activation of Ca2+-dependent kinases CaMKII, ERK and CDK1. However, optogenetically engineered Ca2+ signaling did not activate calcineurin phosphatase to dephosphorylate DRP1 at Ser637. In addition, light illumination had no effect on the expression levels of the mitochondrial fusion proteins mitofusin 1 (MFN1) and 2 (MFN2). Overall, this study provides an effective and innovative approach to altering Ca2+ signaling for controlling mitochondrial fission with a more precise resolution than pharmacological approaches in the temporal dimension.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10323238 | PMC |
http://dx.doi.org/10.1242/jcs.260819 | DOI Listing |
Nat Methods
September 2025
Department of Radiology, Michigan State University, East Lansing, MI, USA.
Concurrent recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) signals reveals cross-scale neurovascular dynamics crucial for explaining fundamental linkages between function and behaviors. However, MRI scanners generate artifacts for EEG detection. Despite existing denoising methods, cabled connections to EEG receivers are susceptible to environmental fluctuations inside MRI scanners, creating baseline drifts that complicate EEG signal retrieval from the noisy background.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
Neuroscience Research Australia, Sydney, NSW 2031, Australia.
Optogenetics offers a minimally invasive, low-fatigue, and temporally precise alternative to electrical stimulation for skeletal muscle control. After opsin expression in muscle cells, contraction can be stimulated with light. Obstructive sleep apnea, characterized by repeated airway collapse during sleep, suits this approach, as upper airway muscles are readily accessible via the oral cavity, and require stimulation synchronized to respiration.
View Article and Find Full Text PDFCell Regen
September 2025
Center for Translational Neural Regeneration Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China.
Neural regeneration stands at the forefront of neuroscience, aiming to repair and restore function to damaged neural tissues, particularly within the central nervous system (CNS), where regenerative capacity is inherently limited. However, recent breakthroughs in biotechnology, especially the revolutions in genetic engineering, materials science, multi-omics, and imaging, have promoted the development of neural regeneration. This review highlights the latest cutting-edge technologies driving progress in the field, including optogenetics, chemogenetics, three-dimensional (3D) culture models, gene editing, single-cell sequencing, and 3D imaging.
View Article and Find Full Text PDFJ Neural Eng
September 2025
Department of Computer Science and Engineering College of Engineering, University of Washington, Box 352350, Seattle, WA 98195-2350, USA, Seattle, Washington, 98105, UNITED STATES.
Unlabelled: Closed-loop neural stimulation provides novel therapies for neurological diseases such as Parkinson's disease (PD), but it is not yet clear whether artificial intelligence (AI) techniques can tailor closed-loop stimulation to individual patients or identify new therapies. Further advancements are required to address a number of difficulties with translating AI to this domain, including sample efficiency, training time, and minimizing loop latency such that stimulation may be shaped in response to changing brain activity.
Approach: we propose temporal basis function models (TBFMs) to address these difficulties, and explore this approach in the context of excitatory optogenetic stimulation.
J Med Chem
September 2025
Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
The etiology of complex diseases such as metabolic-associated steatohepatitis (MASH) presents significant challenges for therapeutic discovery. Here, we developed ComplexDnet, a transcriptome- and network-integrated framework to prioritize disease-relevant targets. Applied across eight cancer types, ComplexDnet achieved an average recall of 77.
View Article and Find Full Text PDF