Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As the global energy crisis intensifies, the development of solar energy has become a vital area of focus for many nations. The utilization of phase change materials (PCMs) for photothermal energy storage in the medium temperature range holds great potential for various applications, but their conventional forms face several challenges. For instance, the longitudinal thermal conductivity of photothermal PCMs is inadequate for effective heat storage on the photothermal conversion surface, and there is a risk of leakage due to repeated solid-liquid phase transitions. Here, we report a solid-solid phase change material, tris(hydroxymethyl)aminomethane (TRIS), which has a phase change temperature of 132 °C in the medium temperature range, enabling high-grade and stable solar energy storage. To overcome the low thermal conductivity problem, we propose a large-scale production of oriented high thermal conductivity composites by compressing a mixture of TRIS and expanded graphite (EG) using the pressure induction method to create in-plane highly thermally conductive channels. Remarkably, the resulting phase change composites (PCCs) exhibit a directional thermal conductivity of 21.3 W/(m·K). Furthermore, the high phase change temperature (132 °C) and large phase change entropy (213.47 J/g) enable a large-capacity high-grade thermal energy to be used. The developed PCCs, when combined with selected photo-absorbers, exhibit efficient integration of solar-thermal conversion and storage. Additionally, we also demonstrated a solar-thermoelectric generator device with an energy output of 93.1 W/m, which is close to the power of photovoltaic systems. Overall, this work provides a technological route to the large-scale fabrication of mid-temperature solar energy storage materials with high thermal conductivity, high phase change enthalpy, and no risk of leakage, and also offers a potential alternative to photovoltaic technology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c04429DOI Listing

Publication Analysis

Top Keywords

phase change
32
thermal conductivity
24
energy storage
16
high thermal
12
solar energy
12
phase
9
oriented high
8
solid-solid phase
8
change
8
change materials
8

Similar Publications

Purpose: To enhance the temporal feature learning capability of the laparoscopic cholecystectomy phase recognition model and address the class imbalance issue in the training data, this paper proposes an Xception-dual-channel LSTM fusion model based on a dynamic data balancing strategy.

Methods: The model dynamically adjusts the undersampling rate for each surgical phase, extracting short video clips from the original data as training samples to balance the data distribution and mitigate biased learning. The Xception model, utilizing depthwise separable convolutions, extracts fundamental visual features frame by frame, which are then passed to a dual-channel LSTM network.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV), the causative agent of white spot disease, remains a serious threat to crustacean aquaculture. Infecting a wide range of crustaceans, host species exhibit varying susceptibility and mortality rates. Mud crabs, Scylla serrata, a high-value aquaculture commodity across the Indo-Pacific region, are known to be relatively resistant to WSSV.

View Article and Find Full Text PDF

Exploring the Effect of Negative Mood on Working Memory Subprocesses: An Event-Related Potential Study.

Biol Psychol

September 2025

Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610066, China. Electronic address:

Working memory (WM) regulates information flow through gate mechanisms, consisting of four subprocesses: gate opening, gate closing, updating, and substitution. However, their neural mechanisms remain underexplored. While emotion-cognition interactions are well studied, the effects of negative mood on these subprocesses are unclear.

View Article and Find Full Text PDF

Discarded sericultural mulberry branch based triple layer composite phase change material with lignin enhanced thermal management capability.

Int J Biol Macromol

September 2025

Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China. Electronic address:

With the exhaustion of fossil fuels, prior phase change materials are characterized by such drawbacks as poor thermal conductivity, weak shape stability, and high costs. Therefore, the preparation of phase change materials with brilliant thermal-insulating properties, high thermal conductivity, and leakage-free properties has emerged as a crucial research focus. Herein, a sericultural mulberry branch-derived (SMB) composite phase change material was prepared by deep eutectic solvent pretreated SMB and vacuum-assisted impregnated paraffin wax with cupric oxide (CuO).

View Article and Find Full Text PDF

Central bank digital money (CBDM) uses among patrons in hospitality and tourism.

Acta Psychol (Amst)

September 2025

College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, Republic of Korea.

An industrial trend regarding a surging amount of attention to central bank digital money (CBDM) by government bodies and consumers has recently been observed. The aim of this study is to assess the roles of the antecedents and moderators, which include fear of missing out, confidence of CBDM in the digitalized era, and attachment to CBDM, in regards to predicting CBDM adoption within the framework of the theory of planned behavior and the five phases of the consumer adoption process in order to keep up to date with this rapidly changing industrial trend. Data sets from 515 respondents were collected for empirical analyses via an online panel survey in order to achieve the research objectives.

View Article and Find Full Text PDF