Measurement Optimization Techniques for Excited Electronic States in Near-Term Quantum Computing Algorithms.

J Chem Theory Comput

Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.

Published: June 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The variational quantum eigensolver (VQE) remains one of the most popular near-term quantum algorithms for solving the electronic structure problem. Yet, for its practicality, the main challenge to overcome is improving the quantum measurement efficiency. Numerous quantum measurement techniques have been developed recently, but it is unclear how these state-of-the-art measurement techniques will perform in extensions of VQE for obtaining excited electronic states. Assessing the measurement techniques' performance in the excited state VQE is crucial because the measurement requirements in these extensions are typically much greater than in the ground state VQE, as one must measure the expectation value of multiple observables in addition to that of the electronic Hamiltonian. Here, we adapt various measurement techniques to two widely used excited state VQE algorithms: multistate contraction and quantum subspace expansion. Then, the measurement requirements of each measurement technique are numerically compared. We find that the best methods for multistate contraction are ones utilizing Hamiltonian data and wave function information to minimize the number of measurements. In contrast, randomized measurement techniques are more appropriate for quantum subspace expansion, with many more observables of vastly different energy scales to measure. Nevertheless, when the best possible measurement technique for each excited state VQE algorithm is considered, significantly fewer measurements are required in multistate contraction than in quantum subspace expansion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.3c00218DOI Listing

Publication Analysis

Top Keywords

measurement techniques
16
state vqe
16
excited state
12
multistate contraction
12
quantum subspace
12
subspace expansion
12
measurement
11
techniques excited
8
excited electronic
8
electronic states
8

Similar Publications

Objectives: This study explores cranial morphological variation and population continuity in the Carpathian Basin from the 1st to 13th centuries CE. It focuses on assessing biological differences and similarities across major archaeological periods, with particular emphasis on the Avar, Hungarian Conquest, and Árpádian Age populations.

Materials And Methods: A total of 1,597 adult crania (864 males, 733 females) were analyzed using six neurocranial measurements.

View Article and Find Full Text PDF

Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.

View Article and Find Full Text PDF

Introduction: We compared and measured alignment between the Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard used by electronic health records (EHRs), the Clinical Data Interchange Standards Consortium (CDISC) standards used by industry, and the Uniform Data Set (UDS) used by the Alzheimer's Disease Research Centers (ADRCs).

Methods: The ADRC UDS, consisting of 5959 data elements across eleven packets, was mapped to FHIR and CDISC standards by two independent mappers, with discrepancies adjudicated by experts.

Results: Forty-five percent of the 5959 UDS data elements mapped to the FHIR standard, indicating possible electronic obtainment from EHRs.

View Article and Find Full Text PDF

Introduction: Differentiating acute tubular necrosis (ATN) from rejection in pediatric kidney transplant (KT) recipients remains challenging and necessitates invasive biopsy. Doppler ultrasound-derived resistive index (RI) is a noninvasive modality to assess graft status, but its diagnostic utility in children is unclear. This study evaluates RI's ability to distinguish ATN and rejection in KT.

View Article and Find Full Text PDF