98%
921
2 minutes
20
Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388035 | PMC |
http://dx.doi.org/10.1016/j.trsl.2023.05.002 | DOI Listing |
Diabetes Metab Syndr Obes
September 2025
School of Medical, Indigenous and Health, University of Wollongong, Wollongong, New South Wales, Australia.
Introduction: Obesity remains a critical global health challenge, intricately linked to poor dietary quality, gut microbiota dysbiosis, and mitochondrial dysfunction.
Purpose: This study aimed to investigate the comparative effects of brown rice, meal replacements, and thiazolidinediones on mitochondrial abundance and gut microbiota composition in a rat model of diet-induced obesity.
Methods And Materials: A total of twenty male Sprague Dawley rats were randomly assigned to five groups: control, high-fat high-fructose diet, and three intervention groups receiving the same obesogenic diet supplemented with brown rice, meal replacement, or thiazolidinediones for twelve weeks.
Front Endocrinol (Lausanne)
September 2025
Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
Background: Obesity is associated with hormonal imbalance, increased oxidative stress, and inflammation in the testis. These conditions adversely affect sperm quality, leading to impaired male fertility. Therefore, therapeutic interventions to counteract the adverse effects of obesity are crucial.
View Article and Find Full Text PDFLife Sci
September 2025
Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, 221 84, Lund, Sweden. Electronic address:
Aims: Experimental evidence suggests an important role for sphingosine-1-phosphate (S1P) and its generating enzymes sphingosine kinase 1/2 (SphK1/2) in obesity. We and others have shown that plasma S1P levels are elevated in obese mice and humans. Preclinical studies suggest that genetic SphK2 ablation in mice protects from age- and diet-induced obesity and metabolic dysfunction.
View Article and Find Full Text PDFMol Nutr Food Res
September 2025
Institute of Nutrition and Health, Qingdao University, Qingdao, People's Republic of China.
Ellagic acid (EA), a bioactive polyphenol abundant in pomegranate and berries, exhibits potential in metabolic regulation. This study investigates EA's anti-obesity mechanisms, focusing on its effects on gut microbiota and transcriptional regulation in adipose tissue. After a 9-week high-fat diet feeding, mice were divided into groups and treated with low-dose EA (10 mg/kg/day), high-dose EA (30 mg/kg/day), or urolithin A (20 mg/kg/day) for 7 weeks, with healthy and obese controls included.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2025
Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas. Universidad Católica Argentina, Buenos Aires, Argentina.
Cardiometabolic syndrome (CMS) encompasses a cluster of metabolic abnormalities, including obesity, insulin resistance, dyslipidemia, and hypertension that collectively increase the risk of cardiovascular disease and type 2 diabetes. Animal models are widely used to study CMS, with diet-induced models being the most physiologically relevant. A lack of reporting standards and variability in dietary composition, feeding duration, and macronutrient content across studies hinder reproducibility assessment and translational impact evaluation.
View Article and Find Full Text PDF