Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ionic organic crystals containing organic planar π-conjugated units has become one of the hot spots as nonlinear optical (NLO) materials. However, although this type of ionic organic NLO crystals commonly have remarkable second harmonic generation (SHG) responses, they also suffer from overlarge birefringences and relatively small band gaps that be hardly beyond 6.2 eV. Herein, a flexible π-conjugated [C H(CH )O ] unit was theoretically revealed, showing great potential for designing NLO crystals with balanced optical properties. Accordingly, through the reasonable NLO-favourable layered design, a new ionic organic material, NH [LiC H(CH )O ], was successfully obtained. As expected, it achieves not only a large SHG effect (4×KDP), but also a suitable birefringence (0.06@546 nm) and an ultrawide band gap (>6.5 eV). This study provides a new flexible π-conjugated NLO-active unit, contributing to design more ionic organic NLO materials with excellent balanced optical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202304858DOI Listing

Publication Analysis

Top Keywords

ionic organic
20
design ionic
12
nonlinear optical
8
material [lic
8
[lic hch
8
ultrawide band
8
band gap
8
nlo materials
8
organic nlo
8
nlo crystals
8

Similar Publications

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Truxenone-Based Covalent Organic Framework/Carbon Nanotube Composite for High-Performance Low-Temperature Sodium-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.

Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) exhibit outstanding structural tunability, clearly defined ion pathways, and remarkable thermal/chemical stabilities, rendering them highly promising candidates for applications in solid-state electrolytes. However, it remains a challenge to develop a versatile method to incorporate both ionic groups and electron-withdrawing units into a single framework for effectively improving the lithium-ion conductivity. Herein, a series of novel [3+3] defective COFs is successfully synthesized featuring active amine/aldehyde anchoring sites for subsequent post-modification, and regulates the ion conductivity through elaborately tuning the anionic/cationic groups and weak/strong electron-withdrawing units.

View Article and Find Full Text PDF

Nifurtimox (NFX) is a chiral drug used for the treatment of Chagas Disease. Little attention has been paid to the enantioselective properties of chiral drugs used for neglected tropical diseases, highlighting the need for further studies in this area. In this work, the enantioselective properties of NFX were carefully investigated by HPLC using different chiral stationary phases (CSPs) and chromatographic modes.

View Article and Find Full Text PDF

Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.

View Article and Find Full Text PDF