98%
921
2 minutes
20
Background: The yellow jasmine flower (Jasminum humile L.) is a fragrant plant belonging to the Oleaceae family with promising phytoconstituents and interesting medicinal uses. The purpose of this study was to characterize the plant metabolome to identify the potential bioactive agents with cytotoxic effects and the underlying mechanism of cytotoxic activity.
Methods: First, HPLC-PDA-MS/MS was used to identify the potential bioactive compounds in the flowers. Furthermore, we assessed the cytotoxic activity of the flower extract against breast cancer (MCF-7) cell line using MTT assay followed by the cell cycle, DNA-flow cytometry, and Annexin V-FITC analyses alongside the effect on reactive oxygen species (ROS). Finally, Network pharmacology followed by a molecular docking study was performed to predict the pathways involved in anti-breast cancer activity.
Results: HPLC-PDA-MS/MS tentatively identified 33 compounds, mainly secoiridoids. J. humile extract showed a cytotoxic effect on MCF-7 breast cancer cell line with IC value of 9.3 ± 1.2 µg/mL. Studying the apoptotic effect of J. humile extract revealed that it disrupts G2/M phase in the cell cycle, increases the percentage of early and late apoptosis in Annexin V-FTIC, and affects the oxidative stress markers (CAT, SOD, and GSH-R). Network analysis revealed that out of 33 compounds, 24 displayed interaction with 52 human target genes. Relationship between compounds, target genes, and pathways revealed that J. humile exerts its effect on breast cancer by altering, Estrogen signaling pathway, HER2, and EGFR overexpression. To further verify the results of network pharmacology, molecular docking was performed with the five key compounds and the topmost target, EGFR. The results of molecular docking were consistent with those of network pharmacology.
Conclusion: Our findings suggest that J. humile suppresses breast cancer proliferation and induces cell cycle arrest and apoptosis partly by EGFR signaling pathway, highlighting J. humile as a potential therapeutic candidate against breast cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199617 | PMC |
http://dx.doi.org/10.1186/s12906-023-03987-w | DOI Listing |
JAMA Netw Open
September 2025
Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.
Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.
Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.
Obstet Gynecol
July 2025
Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia.
Med Oncol
September 2025
Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2025
Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.
S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.
Purpose: Breast cancer (BC) is the most frequent cancer among women and the second leading cause of central nervous system (CNS) metastases. While the epidemiology of CNS metastases from BC has been well described, little is known about the treatment patterns and outcomes of young women < 40 years of age with BC that is metastatic to the CNS.
Methods: In this retrospective analysis, we identified patients with metastatic breast cancer (MBC) to the CNS who were treated at the Sunnybrook Odette Cancer Center, Toronto, Canada between 2008 and 2018.