Highly Efficient NO Sensors Based on Al-ZnOHF under UV Assistance.

Materials (Basel)

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zinc hydroxyfluoride (ZnOHF) is a newly found resistive semiconductor used as a gas-sensing material with excellent selectivity to NO because of its unique energy band structure. In this paper, Al doping and UV radiation were used to further improve the gas-sensing performance of ZnOHF. The optimized 0.5 at.% Al-ZnOHF sample exhibits improved sensitivity to 10 ppm NO at a lower temperature (100 °C) under UV assistance, as well as a short response/recovery time (35 s/96 s). The gas-sensing mechanism demonstrates that Al doping increases electron concentration and promotes electron transfer of the nanorods by reducing the bandgap of ZnOHF, and the photogenerated electrons and holes with high activity under UV irradiation provide new reaction routes in the gas adsorption and desorption process, effectively promoting the gas-sensing process. The synergistic effect of Al and UV radiation contribute to the enhanced performance of Al-ZnOHF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180258PMC
http://dx.doi.org/10.3390/ma16093577DOI Listing

Publication Analysis

Top Keywords

highly efficient
4
efficient sensors
4
sensors based
4
based al-znohf
4
al-znohf assistance
4
assistance zinc
4
zinc hydroxyfluoride
4
hydroxyfluoride znohf
4
znohf newly
4
newly resistive
4

Similar Publications

Solid-state polycyclotrimerization of diynes to porous organic polymers.

Chem Commun (Camb)

September 2025

Inorganic Chemistry I Institute, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.

Herein, we report a solid-state polycyclotrimerization of 1,4-diethynylbenzene using mechanochemical activation in a ball mill, yielding a highly porous and hydrophobic hyperbranched polymer (HBP) with a specific surface area of up to 570 m g. The reaction, catalyzed by Fe(hmds) and conducted under solvent-free conditions, was optimized by varying milling time and frequency. This method enables the efficient synthesis of insoluble, porous organic polymers with high yields (up to 95%) and offers an environmentally friendly alternative to traditional solution-based polymerizations.

View Article and Find Full Text PDF

Recent Advances in Metal-Organic Frameworks for Electromagnetic Wave Absorption.

Research (Wash D C)

September 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, China.

With the rapid advancement of communication technologies, issues of electromagnetic pollution and electromagnetic compatibility have become increasingly severe, heightening the demand for high-performance electromagnetic wave absorption materials. Metal-organic frameworks (MOFs) have flourished in this field owing to their chemical tunability, high porosity, tailored topological structures, and functionality. MOF-derived composites exhibit diverse loss mechanisms and heterogeneous structures, achieving lightweight, broadband, and highly efficient absorption.

View Article and Find Full Text PDF

Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).

View Article and Find Full Text PDF

Highly contagious respiratory infection diseases such as COVID-19 can be transmitted by inhaling virus laden liquid droplets and short-range aerosols, released by an infected person. Particularly, in hospitals, spraying of the respiratory droplets containing pathogens from the conjunctiva or mucus of a susceptible person plays a key role in transferring the infectious diseases. N95 filtering respirators are a critical personal protective equipment.

View Article and Find Full Text PDF

Effective removal of trace heavy metal ions from aqueous bodies is a pressing problem and requires significant improvement in the area of absorbent material in terms of removal efficiency and sustainability. We propose an efficient strategy to enhance the adsorption efficiency of carbon nanotubes (CNTs) by growing dendrimers on their surface. First, CNTs were pre-functionalized with maleic acid (MA) via Diels-Alder reaction in presence of a deep eutectic solvent under ultrasonication.

View Article and Find Full Text PDF