98%
921
2 minutes
20
In-depth studies on the interaction of natural compounds with cancer-related G-quadruplex structures have been undertaken only recently, despite their high potential as anticancer agents, especially due to their well-known and various bioactivities. In this frame, aiming at expanding the repertoire of natural compounds able to selectively recognize G-quadruplexes, and particularly focusing on phenanthrenoids, a mini-library including dimeric (-) and glucoside (-) analogues of 9,10-dihydrophenanthrenes, a related tetrahydropyrene glucoside () along with 9,10-dihydrophenanthrene were investigated here by several biophysical techniques and molecular docking. Compounds and emerged as the most selective G-quadruplex ligands within the investigated series. These compounds proved to mainly target the grooves/flanking residues of the hybrid telomeric and parallel oncogenic G-quadruplex models exploiting hydrophobic, hydrogen bond and π-π interactions, without perturbing the main folds of the G-quadruplex structures. Notably, a binding preference was found for both ligands towards the hybrid telomeric G-quadruplex. Moreover, compounds and proved to be active on different human cancer cells in the low micromolar range. Overall, these compounds emerged as useful ligands able to target G-quadruplex structures, which are of interest as promising starting scaffolds for the design of analogues endowed with high and selective anticancer activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10178421 | PMC |
http://dx.doi.org/10.3390/ijms24097765 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
Biological cells use cations as signaling messengers to regulate a variety of responses. Linking cations to the functionality of synthetic membranes is thus crucial to engineering advanced biomimetic agents such as synthetic cells. Here, we introduce bioinspired DNA-based receptors that exploit noncanonical G-quadruplexes for cation-actuated structural and functional responses in synthetic lipid membranes.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China.
Background: DNA G-quadruplexes (G4s) are non-canonical secondary structures formed in guanine-rich DNA sequences and play important roles in modulating biological processes through a variety of gene regulatory mechanisms. Emerging G4 profiling allows global mapping of endogenous G4 formation.
Results: Here in this study, we map the G4 landscapes in adult skeletal muscle stem cells (MuSCs), which are essential for injury-induced muscle regeneration.
Biochemistry
September 2025
Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States.
BRCA1 is a crucial component of homologous recombination (HR), a high-fidelity pathway for repairing double-stranded DNA breaks (DSBs) in human cells. The central region of the BRCA1 protein contains two putative DNA binding domains (DBDs), yet their relative substrate specificities and functional contributions to HR remain unclear. Here, we characterized the DNA binding properties of DBD1 (amino acids 330-554), DBD2 (amino acids 894-1057), and BRCA1 C-terminal (BRCT) repeats using biolayer interferometry.
View Article and Find Full Text PDFNucleic Acids Res
August 2025
Department of Chemistry and State Key Laboratory of Marine Environmental Health, City University of Hong Kong, Hong Kong SAR, 000000, China.
TDP-43 is a hallmark protein associated with neurodegenerative diseases. Recent studies revealed TDP-43 as an RNA G-quadruplex (rG4)-binding protein, impacting mRNA transport and function. However, our knowledge of the TDP-43-RNA secondary structure interaction and information on its specific rG4 targets are limited.
View Article and Find Full Text PDFCancer Cell Int
September 2025
Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 21, Naples, 80126, Italy.
The identification of reliable biomarkers is essential for improving breast cancer (BC) detection, prognosis, and treatment. This study explores a human telomeric G-quadruplex (G4) model, tel, functionalized on Controlled Pore Glass (CPG) support, as a novel biomarker discovery tool. The oligonucleotide tel mimics multimeric G4 structures in telomeric overhangs.
View Article and Find Full Text PDF