98%
921
2 minutes
20
The brain is one of the most common metastatic sites among breast cancer patients, especially in those who have Her2-positive or triple-negative tumors. The brain microenvironment has been considered immune privileged, and the exact mechanisms of how immune cells in the brain microenvironment contribute to brain metastasis remain elusive. In this study, we found that neutrophils are recruited and influenced by c-Met high brain metastatic cells in the metastatic sites, and depletion of neutrophils significantly suppressed brain metastasis in animal models. Overexpression of c-Met in tumor cells enhances the secretion of a group of cytokines, including CXCL1/2, G-CSF, and GM-CSF, which play critical roles in neutrophil attraction, granulopoiesis, and homeostasis. Meanwhile, our transcriptomic analysis demonstrated that conditioned media from c-Met high cells significantly induced the secretion of lipocalin 2 (LCN2) from neutrophils, which in turn promotes the self-renewal of cancer stem cells. Our study unveiled the molecular and pathogenic mechanisms of how crosstalk between innate immune cells and tumor cells facilitates tumor progression in the brain, which provides novel therapeutic targets for treating brain metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10177081 | PMC |
http://dx.doi.org/10.3390/cancers15092626 | DOI Listing |
Neurosurg Rev
September 2025
Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F-75014, France.
Awake craniotomy is the gold standard to achieve maximal safe resection of brain lesions located within eloquent areas. There are no established guidelines to assess patient's eligibility for awake craniotomy by weight class. This study assesses feasibility, safety, and efficacy of awake surgery by weight classes through an observational, retrospective, single-institution cohort analysis (2010-2024) of 526 awake craniotomies.
View Article and Find Full Text PDFNeurosurg Rev
September 2025
Department of Neurosurgery, University Hospital of Ioannina, Ioannina, Greece.
Background: The aim of this review is to present the role of intraoperative flow cytometry (IFC) in the intracranial tumor surgery. This scoping review aims to summarize current evidence on the intraoperative use of IFC in patients with intracranial tumors.
Methods: A comprehensive literature search was conducted in the Medline, Cochrane and Scopus databases up to January 21, 2025.
JCI Insight
September 2025
The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children; Toronto, Canada.
More than a third of patients with glioblastoma experience tumor progression during adjuvant therapy. In this study, we performed a high-throughput drug repurposing screen of FDA-approved agents capable of crossing the blood-brain barrier in order to find agents to counteract acquired or inherent glioma cell resistance to temozolomide-associated cytotoxicity. We identified the cholesterol processing inhibitor, lomitapide, as a potential chemosensitizer in glioblastoma.
View Article and Find Full Text PDFPurpose: WU-KONG1B (ClinicalTrials.gov identifier: NCT03974022) is a multinational phase II, dose-randomized study to assess the antitumor efficacy of sunvozertinib in pretreated patients with advanced non-small cell lung cancer (NSCLC) with epidermal growth factor receptor () exon 20 insertion mutations (exon20ins).
Methods: Eligible patients with advanced-stage exon20ins NSCLC were randomly assigned by 1:1 ratio to receive sunvozertinib 200 mg or 300 mg once daily (200 and 300 mg-rand cohorts).
Brain Behav
September 2025
Department of Thoracic Surgery II, Department of Lung Transplantation, Organ Transplantation Center, the First Hospital of Jilin University, Changchun, China.
Background: Ischemic stroke (IS) treatment remains a significant challenge. This study aimed to identify potential druggable genes for IS using a systematic druggable genome-wide Mendelian Randomization (MR) analysis.
Methods: Two-sample MR analysis was conducted to identify the causal association between potential druggable genes and IS.