Early growth response factor 1 upregulates pro-fibrotic genes through activation of TGF-β1/Smad pathway via transcriptional regulation of PAR1 in high-glucose treated HK-2 cells.

Mol Cell Endocrinol

Department of Hepatobiliary Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China. Electronic address:

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tubulointerstitial fibrosis (TIF) makes a key role in diabetic kidney disease (DKD). In this study, we revealed that the expressions of Egr1 and protease-activated receptor 1 (PAR1) were increased in renal tissues of DKD rats. In vitro experiments demonstrated that both Egr1 overexpression and high glucose (HG) condition could promote the expressions of PAR1, fibronectin (FN) and collagen I (COL I). Furthermore, HG stimulation enhanced the binding capacity of Egr1 to PAR1 promoter. Both HG condition and Egr1 upregulation could increase, and thrombin inhibitor did not affect activity of TGF-β1/Smad pathway via PAR1. Collectively, Egr1 is involved in TIF of DKD partly through activating TGF-β1/Smad pathway via transcriptional regulation of PAR1 in HG treated HK-2 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2023.111953DOI Listing

Publication Analysis

Top Keywords

tgf-β1/smad pathway
12
pathway transcriptional
8
transcriptional regulation
8
regulation par1
8
treated hk-2 cells
8
par1
6
egr1
5
early growth
4
growth response
4
response factor
4

Similar Publications

Dual Role of DLK1 in GnRH Neuron Ontogeny.

Stem Cell Rev Rep

September 2025

Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.

View Article and Find Full Text PDF

Liver fibrosis (LF) is a pathological condition resulting from a chronic inflammatory response to multiple etiological factors, including viral infections, excessive alcohol consumption, and metabolic disorders. The important role of macrophages in this process, especially the M2 subtype, has attracted attention as a potential target for macrophage-based immunotherapy. M2 macrophages have anti-inflammatory and reparative properties that enable them to modulate the immune response and facilitate repairing damaged tissues.

View Article and Find Full Text PDF

Objective: To explore the impact of Tripterygium wilfordii glycosides (TWG) on glomerulosclerosis within a rat model of chronic kidney disease (CKD), as well as the role of the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway in this mechanism.

Methods: Twenty-four clean Sprague-Dawley rats were divided into Sham group (n = 8), model group (n = 8) and TWG group (n = 8). Adriamycin nephropathy (ADRN) rat model was established by jugular vein injection of adriamycin (ADR).

View Article and Find Full Text PDF

Peritoneal Dialysis (PD) requires a healthy and functional peritoneal membrane for adequate ultrafiltration and fluid balance, making it a vital treatment for patients with end-stage renal disease (ESRD). The spectrum of PD-associated peritoneal fibrosis encompasses a diverse range of collective mechanisms: peritoneal fibrogenesis, epithelial to mesenchymal transition (EMT), peritonitis, angiogenesis, sub-mesothelial immune cells infiltration, and collagen deposition in the sub-mesothelial compact zone of the membrane that accompany deteriorating membrane function. In this narrative review, we summarize the repertoire of current knowledge about the structure, function, and pathophysiology of the peritoneal membrane, focusing on biomolecular mechanisms and signalling pathways that potentiate the development and progression of peritoneal fibrosis.

View Article and Find Full Text PDF

Objective: To investigate the anticancer effects and underlying mechanisms of 8-nitrotryptanthrin (8-Nitrotryp) against colorectal cancer (CRC).

Methods: The effects of 8-Nitrotryp on proliferation, colony formation, and migration were evaluated in HCT116 and SW480 cells, with comparisons to its parent compound tryptanthrin (Tryp). Mitochondrial membrane potential (MMP) was assessed using JC-1 staining, and early apoptosis was analyzed by flow cytometry.

View Article and Find Full Text PDF