98%
921
2 minutes
20
An increase in phosphorylation of the Tau protein is associated with Alzheimer's disease (AD) progression through unclear molecular mechanisms. In general, phosphorylation modifies the interaction of intrinsically disordered proteins, such as Tau, with other proteins; however, elucidating the structural basis of this regulation mechanism remains challenging. The bridging integrator-1 gene is an AD genetic determinant whose gene product, BIN1, directly interacts with Tau. The proline-rich motif recognized within a Tau(210-240) peptide by the SH3 domain of BIN1 (BIN1 SH3) is defined as PTPP, and this interaction is modulated by phosphorylation. Phosphorylation of T217 within the Tau(210-240) peptide led to a 6-fold reduction in the affinity, while single phosphorylation at either T212, T231, or S235 had no effect on the interaction. Nonetheless, combined phosphorylation of T231 and S235 led to a 3-fold reduction in the affinity, although these phosphorylations are not within the BIN1 SH3-bound region of the Tau peptide. Using nuclear magnetic resonance (NMR) spectroscopy, these phosphorylations were shown to affect the local secondary structure and dynamics of the Tau(210-240) peptide. Models of the (un)phosphorylated peptides were obtained from molecular dynamics (MD) simulation validated by experimental data and showed compaction of the phosphorylated peptide due to increased salt bridge formation. This dynamic folding might indirectly impact the BIN1 SH3 binding by a decreased accessibility of the binding site. Regulation of the binding might thus not only be due to local electrostatic or steric effects from phosphorylation but also to the modification of the conformational properties of Tau.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.2c00717 | DOI Listing |
J Biol Chem
August 2025
Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613. Electronic address:
Bridging Integrator 1 (BIN1) is a genetic risk factor for late-onset Alzheimer disease. BIN1's participation in endocytosis, membrane remodeling, and modulation of actin dynamics is well-characterized in non-neuronal cells. In neurons, BIN1 is enriched at presynaptic sites, where it facilitates excitatory neurotransmitter vesicle release.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, California, United States.
Bridging integrator 1, initially named box-dependent myc-interacting protein-1 (BIN1), and also known as Amphiphysin 2 is a versatile N-BAR protein that plays essential roles in membrane remodeling, protein trafficking, and cellular organization across multiple tissues. Although extensively studied in cancer and Alzheimer's disease, BIN1's critical functions in cardiac physiology and pathology represent an emerging frontier with significant therapeutic implications. This review provides a synopsis of our current understanding of BIN1's structure-function relationships, with particular emphasis on cardiac-specific isoforms and their roles in heart function.
View Article and Find Full Text PDFElife
July 2024
Equipe Labellisee Ligue 2015, Departement de Biologie Structurale Integrative, Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR 7104/Universite de Strasbourg, Illkirch, France.
Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy.
View Article and Find Full Text PDFBio Protoc
June 2023
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Bin/Amphiphysin/Rvs (BAR) proteins are known as classical membrane curvature generators during endocytosis. Amphiphysin, a member of the N-BAR sub-family of proteins that contain a characteristic amphipathic sequence at the N-terminus of the BAR domain, is involved in clathrin-mediated endocytosis. Full-length amphiphysin contains a ~ 400 amino acid long disordered linker connecting the N-BAR domain and a C-terminal Src homology 3 (SH3) domain.
View Article and Find Full Text PDFBiochemistry
June 2023
CNRS EMR9002 Integrative Structural Biology, Lille F-59000, France.
An increase in phosphorylation of the Tau protein is associated with Alzheimer's disease (AD) progression through unclear molecular mechanisms. In general, phosphorylation modifies the interaction of intrinsically disordered proteins, such as Tau, with other proteins; however, elucidating the structural basis of this regulation mechanism remains challenging. The bridging integrator-1 gene is an AD genetic determinant whose gene product, BIN1, directly interacts with Tau.
View Article and Find Full Text PDF