Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Most patients who undergo radiotherapy develop radiation skin injury, for which effective treatment is urgently needed. MnSOD defends against reactive oxygen species (ROS) damage and may be valuable for treating radiation-induced injury. Here, we (i) investigated the therapeutic and preventive effects of local multiple-site injections of a plasmid, encoding human MnSOD, on radiation-induced skin injury in rats and (ii) explored the mechanism underlying the protective effects of pMnSOD.

Methods: The recombinant plasmid (pMnSOD) was constructed with human cytomegalovirus (CMV) promoter and pUC-ori. The protective effects of pMnSOD against 20-Gy X-ray irradiation were evaluated in human keratinocytes (HaCaT cells) by determining cell viability, ROS levels, and ferroptosisrelated gene expression. In therapeutic treatment, rats received local multiple-site injections of pMnSOD on days 12, 19, and 21 after 40-Gy γ-ray irradiation. In preventive treatment, rats received pMnSOD injections on day -3 pre-irradiation and on day 4 post-irradiation. The skin injuries were evaluated based on the injury score and pathological examination, and ferroptosis-related gene expression was determined.

Results: In irradiated HaCaT cells, pMnSOD transfection resulted in an increased SOD2 expression, reduced intracellular ROS levels, and increased cell viability. Moreover, and expression was significantly upregulated, and erastin-induced ferroptosis was inhibited in HaCaT cells. In the therapeutic and prevention treatment experiments, pMnSOD administration produced local SOD protein expression and evidently promoted the healing of radiation-induced skin injury. In the therapeutic treatment experiments, the injury score in the high-dose pMnSOD group was significantly lower than in the PBS group on day 33 post-irradiation (1.50. 2.80, < 0.05). In the prevention treatment experiments, the skin injury scores were much lower in the pMnSOD administration groups than in the PBS group from day 21 to day 34. , and were upregulated in irradiated skin tissues after pMnSOD treatment, while was downregulated.

Conclusion: The present study provides evidence that the protective effects of MnSOD in irradiated HaCaT cells may be related to the inhibition of ferroptosis. The multi-site injections of pMnSOD had clear therapeutic and preventive effects on radiation-induced skin injury in rats. pMnSOD may have therapeutic value for the treatment of radiation-induced skin injury.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201820666230508120720DOI Listing

Publication Analysis

Top Keywords

skin injury
28
radiation-induced skin
20
hacat cells
16
local multiple-site
12
multiple-site injections
12
protective effects
12
therapeutic treatment
12
treatment experiments
12
pmnsod
11
injury
10

Similar Publications

Introduction: Complex soft tissue injuries in the facial area can arise from various causes. Surgeons face significant challenges when reconstructing these injuries, as they must select appropriate materials based on texture and color, while also considering their composition and properties. The anterolateral thigh (ALT) flap has emerged as a versatile option in clinical reconstructive surgery, offering many advantages over other free flaps.

View Article and Find Full Text PDF

This study presents a rare case of severe acute bacterial skin and soft tissue infection (ABSSSI) following freshwater fish spike injury in a 73-year-old man. Within 24 hours of sustaining the wound, the patient developed septic shock and progressive necrotizing fasciitis. Despite early administration of broad-spectrum antibiotics and intensive care, his condition deteriorated, necessitating below-the-elbow amputation on hospital day four.

View Article and Find Full Text PDF

The Trilogy of Skin Regeneration via Metal-Organic Frameworks Nanomedicine: Precision Management of Refractory Wounds, Pathological Scarring, and Hair Follicle Reactivation.

Int J Nanomedicine

September 2025

Department of Plastic Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Diabetic infected wounds represent a formidable clinical challenge characterized by persistent hyperglycemia-induced pathological cascades that disrupt normal healing processes through multiple mechanisms including chronic inflammation, oxidative stress, and microvascular dysfunction. As prototypical chronic wounds, they exhibit severely impaired tissue regeneration due to this multifaceted dysfunction in both skin architecture and biological function. Metal-organic frameworks (MOFs) have emerged as promising next-generation therapeutic platforms owing to their exceptional structural tunability, multifunctional properties, and precise spatiotemporal drug delivery capabilities.

View Article and Find Full Text PDF

Acute generalized exanthematous pustulosis (AGEP) is a severe cutaneous adverse reaction that presents with pustular lesions with underlying edematous and erythematous skin, accompanied by fever, leukocytosis, and neutrophilia. It is characterized by an abrupt onset, usually 24-48 hours after the inciting trigger. The incidence of AGEP is an uncommon skin reaction that is primarily seen in female patients.

View Article and Find Full Text PDF

Introduction: Traditional models for studying wound healing, including 2D cell cultures and animal models, present substantial limitations in mimicking human skin physiology. In this study, we present a three-dimensional wounded skin equivalent (3DWoundSE) composed of human cells as a physiologically relevant platform to investigate wound healing processes.

Methods: The model builds upon a previously established 3D skin equivalent (3DSE) and incorporates a reproducible partial-thickness dermal punch wound.

View Article and Find Full Text PDF