Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant hormones are the intrinsic factors that control plant development. The integration of different phytohormone pathways in a complex network of synergistic, antagonistic and additive interactions has been elucidated in model plants. However, the systemic level of transcriptional responses to hormone crosstalk in Brassica napus is largely unknown. Here, we present an in-depth temporal-resolution study of the transcriptomes of the seven hormones in B. napus seedlings. Differentially expressed gene analysis revealed few common target genes that co-regulated (up- and down-regulated) by seven hormones; instead, different hormones appear to regulate distinct members of protein families. We then constructed the regulatory networks between the seven hormones side by side, which allowed us to identify key genes and transcription factors that regulate the hormone crosstalk in B. napus. Using this dataset, we uncovered a novel crosstalk between gibberellin and cytokinin in which cytokinin homeostasis was mediated by RGA-related CKXs expression. Moreover, the modulation of gibberellin metabolism by the identified key transcription factors was confirmed in B. napus. Furthermore, all data were available online from http://yanglab.hzau.edu.cn/BnTIR/hormone. Our study reveals an integrated hormone crosstalk network in Brassica napus, which also provides a versatile resource for future hormone studies in plant species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363766PMC
http://dx.doi.org/10.1111/pbi.14063DOI Listing

Publication Analysis

Top Keywords

brassica napus
12
hormone crosstalk
12
transcription factors
8
napus
6
crosstalk
5
hormones
5
comparative transcriptome
4
transcriptome profiling
4
profiling reveals
4
reveals multiple
4

Similar Publications

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

Exogenous Melatonin Regulates Hormone Signalling and Photosynthesis-Related Genes to Enhance Brassica napus. Yield: A Transcriptomic Perspective.

J Pineal Res

September 2025

School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.

Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.

View Article and Find Full Text PDF

Deciphering the genetic regulation of flowering time in rapeseed for early-maturation breeding.

J Genet Genomics

September 2025

College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec

Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.

View Article and Find Full Text PDF

Hybrid epigenome unveils parental genetic divergence shaping salt-tolerant heterosis in Brassica napus.

New Phytol

September 2025

National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center of Rapeseed, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Heterosis holds great potential for improving yield, quality, and environmental adaptability in crop breeding, which suggests that hybrids can exhibit better performance in adapting to extreme environments. However, the epigenetic mechanisms of salt-tolerant heterosis in allopolyploid crop Brassica napus (AACC, 2n = 38), particularly chromatin accessibility, remain largely unexplored. We investigated the dynamics of chromatin accessibility and transcriptional reprogramming during a time course of salt exposure in Brassica napus hybridization.

View Article and Find Full Text PDF

Identification and expression analysis of the gene family in .

Front Plant Sci

August 2025

College of Life Sciences, Leshan Normal University, Leshan, Sichuan, China.

(Eukaryotic Transcription Factor 2/Dimerization Partner) refers to a class of protein complexes that play a pivotal role in the regulation of gene transcription in eukaryotes. In higher plants, transcription factors are of vital significance in mediating responses to environmental stresses. Based on differences in their conserved structural domains, they can be categorized into three subgroups: E2F, DP, and DEL (DP-E2F-like).

View Article and Find Full Text PDF