98%
921
2 minutes
20
Bio-electrochemical systems (BESs) have attracted wide attention in the field of wastewater treatment owing to their fast electron transfer rate and high performance. Unfortunately, the low electro-chemical activity of carbonaceous materials commonly used in BESs remains a bottleneck for their practical applications. Especially, for refractory pollutants remediation, the efficiency is largely limited by the cathode property in term of (bio)-electrochemical reduction of highly oxidized functional groups. Herein, a reduced graphene oxide (rGO) and polyaniline (PANI) modified electrode was fabricated via two-step electro-deposition using carbon brush as raw material. Benefiting from the modified graphene sheets and PANI nanoparticles, the rGO/PANI electrode shows highly conductive network with the electro-active surface area increased by 12 times (0.013 mF cm) and the charge transfer resistance decreased by 92% (0.23Ω) comparing with the unmodified one. Most importantly, the rGO/PANI electrode used as abiotic cathode achieves highly efficient azo dye removal from wastewater. The highest decolorization efficiency reaches 96 ± 0.03% within 24 h and the maximum decolorization rate is as high as 20.9 ± 1.45 g h·m. The features of improved electro-chemical activity and enhanced pollutant removal efficiency provide a new insight toward development of high performance BESs via electrode modification for practical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116042 | DOI Listing |
Anal Chem
September 2025
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
Electrogenerated chemiluminescence (ECL) methods have been widely used in clinical diagnosis. Although ECL peptide-based biosensors continue to grow with good sensitivity and signal flexibility, little emphasis has been placed on the effect of the peptide sequence on ECL sensitivity. We herein studied the nuanced effects of different peptide sequences on the analytical performance of ECL peptide-based biosensors for matrix metalloproteinase 2 (MMP-2) assay, in which [(pbz)Ir(DMSO)Cl] (pbz = 3-(2-pyridyl)benzoic acid) was used as the ECL emitter while a specific peptide was used as the molecular recognition element.
View Article and Find Full Text PDFAnal Chem
September 2025
RUSA-Center for Advanced Sensor Technology, Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Chhatrapati Sambhajinagar (Aurangabad), Maharashtra 431 004, India.
In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea.
Fast Scan Cyclic Voltammetry (FSCV) is a widely used electrochemical technique to detect rapid extracellular dopamine transients . It employs carbon fiber microelectrodes (CFMEs), but conventional 7 µm diameter CFMEs often suffer from limited mechanical durability and reduced lifespan, hindering their use in chronic monitoring. To improve mechanical robustness and long-term functionality, we fabricated 30 µm diameter CFMEs and modified their geometry via electrochemical etching to form cone-shaped tips.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
Bacterial detection is crucial for accurate clinical diagnostics and effective environmental monitoring. Particularly, , a pathogenic bacterium, can cause a wide range of infections, including meningitis, bloodstream infections, pneumonia, urinary tract infections, and wound or surgical site infections. Herein, a polypyrrole (PPy) functionalized TiCT -tin dioxide nanoparticle (SnO NPs) nanocomposite-based hybrid capacitive electrode for the electrochemical detection of ATCC 700603 is developed.
View Article and Find Full Text PDFAnal Methods
September 2025
College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Niversity Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin, 541006, China.
The amplification of detection signals is an important method for improving the sensitivity of electrochemical detection. This study presents an efficient strategy for preparing electrochemical catalytic materials using a simple self-assembly technique to encapsulate Fe single atoms (Fe-SAs) and Ni single atoms (Ni-SAs) in the Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC) metal-organic framework to form a Cu-BTC@FeNi-SAs catalytic system. Subsequently, Cu-BTC@FeNi-SAs was modified on the surface of a gold electrode, and sulfadiazine was used as a template to prepare a molecularly imprinted polymer (MIP) on the modified electrode.
View Article and Find Full Text PDF