98%
921
2 minutes
20
The Tara Microplastics mission was conducted for 7 months to investigate plastic pollution along nine major rivers in Europe-Thames, Elbe, Rhine, Seine, Loire, Garonne, Ebro, Rhone, and Tiber. An extensive suite of sampling protocols was applied at four to five sites on each river along a salinity gradient from the sea and the outer estuary to downstream and upstream of the first heavily populated city. Biophysicochemical parameters including salinity, temperature, irradiance, particulate matter, large and small microplastics (MPs) concentration and composition, prokaryote and microeukaryote richness, and diversity on MPs and in the surrounding waters were routinely measured onboard the French research vessel Tara or from a semi-rigid boat in shallow waters. In addition, macroplastic and microplastic concentrations and composition were determined on river banks and beaches. Finally, cages containing either pristine pieces of plastics in the form of films or granules, and others containing mussels were immersed at each sampling site, 1 month prior to sampling in order to study the metabolic activity of the plastisphere by meta-OMICS and to run toxicity tests and pollutants analyses. Here, we fully described the holistic set of protocols designed for the Mission Tara Microplastics and promoted standard procedures to achieve its ambitious goals: (1) compare traits of plastic pollution among European rivers, (2) provide a baseline of the state of plastic pollution in the Anthropocene, (3) predict their evolution in the frame of the current European initiatives, (4) shed light on the toxicological effects of plastic on aquatic life, (5) model the transport of microplastics from land towards the sea, and (6) investigate the potential impact of pathogen or invasive species rafting on drifting plastics from the land to the sea through riverine systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996985 | PMC |
http://dx.doi.org/10.1007/s11356-023-26883-9 | DOI Listing |
J Anal At Spectrom
September 2025
Department of Environmental Systems Science, ETH Zurich Universitätstrasse 16 8092 Zurich Switzerland.
Plastic pollution in marine environments poses ecological risks, in part because plastic debris can release hazardous substances, such as metal-based additives. While microplastics have received considerable attention as vectors of contaminants, less is known about larger macroplastics and their role in the spatial and temporal redistribution of substances. In this study, pristine, store-bought plastic items and macroplastics recovered from the North Pacific Subtropical Gyre (NPSG) were analysed using Fourier-Transform Infrared Spectroscopy (FTIR) to identify polymer types, and bulk acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for total metal quantification.
View Article and Find Full Text PDFFEBS Open Bio
September 2025
Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
The global accumulation of plastic waste, exceeding 360 million tonnes annually, represents a critical environmental challenge due to their widespread use and extreme recalcitrance in natural environments. Furthermore, the end-of-life processing of bioplastics, which are often marketed as eco-friendly, remains problematic, with biodegradation often requiring industrial conditions. Enzyme-based depolymerization of polyesters, such as polyethylene terephthalate (PET) and bioplastics (e.
View Article and Find Full Text PDFEnviron Int
September 2025
Center for Respiratory Safety Research, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do 56212, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea. Electronic address:
Plastics, particularly polystyrene (PS), are extensively used worldwide, especially in disposable packaging, which contributes to environmental pollution by generating microplastic particles. Herein, we investigated the pulmonary toxic effects of PS microplastics, focusing on airway inflammation and immune response. PS microplastic (50 nm to 1 μm) exposure was more likely to cause a severe pulmonary inflammatory response, particularly with smaller particle sizes.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Portugal. Electronic address:
Printed circuit boards (PCB) present a complex recycling challenge due to their miniaturisation and different constituents (e.g., metals, plastics), highlighting the need for integrated bioprocessing approaches.
View Article and Find Full Text PDFMinerva Dent Oral Sci
September 2025
Department of Dental Cell Research, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, India -
Dental waste, including metal, plastic, and chemical residues, and high energy and water consumption, significantly contribute to environmental degradation. This review highlights the environmental impact of common dental materials and practices, such as amalgam, resin composites, and disposable plastics. The aim is to examine current evidence, emphasizing mercury pollution, microplastic release, and biomedical waste handling.
View Article and Find Full Text PDF