98%
921
2 minutes
20
Rapid and accurate identification of foodborne pathogens improves public health. Currently employed methods are time-consuming, sensitive to environmental factors, and complex. This study develops a colorimetric sensor for detecting multiple bacteria with one probe using double-enzyme-induced colorimetry. Based on alkaline phosphatase (ALP) in bacteria decomposes L-ascorbic acid 2-magnesium phosphate salt hydrate into ascorbic acid (AA). Manganese dioxide flowers (MnO NFs) can oxidize TMB to etch gold nanorods (Au NRs), which can be inhibited by AA reduction to produce rich colors. Bacteria with varying ALP levels can be identified based on color changes and plasmon resonance wavelength signals produced from Au NRs. Furthermore, the conversion of RGB signals to digital signals and the use of linear discriminant analysis (LDA) allowed 99.57% accuracy in identifying multiple bacteria. It can simultaneously identify five foodborne pathogens across diverse environments (shrimp, meat, milk, etc.). This method may be useful for the rapid and simple identification of foodborne illnesses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2023.115344 | DOI Listing |
IEEE Nanotechnol Mater Devices Conf
October 2024
Utah State University, Logan, UT 84322 USA.
Extinction in thin polymer films containing nanoparticles is important to photovoltaics, sensors, and interconnects. Extinction measured in 1-millimeter-thin films containing plasmonic nanoparticles increased with nanoparticle density to levels higher than predicted. Yet, enhancement of extinction was not measured in <100-nanometer-thin films containing high-density plasmonic nanoparticles.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
An Ag-functionalized structural color hydrogel (Ag-SCH) sensor is constructed for colorimetric detection of glutathione (GSH). The hydrogel is prepared by using the coordination of Ag and 1-vinylimidazole (1-VI) as cross-linking network. GSH acts as a competitive ligand to break the coordination between Ag and 1-VI, leading to the expansion and structural color change of the hydrogel.
View Article and Find Full Text PDFChemistry
September 2025
Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
The long-term visualization of intracellular Fe dynamics and lysosomal activity is crucial for investigating the physiological roles and functions of lysosomes during the growth of organisms. The lysosome-targeted fluorescent probe (RBH-EdC), derived from rhodamine-nucleoside conjugates, demonstrates a sophisticated dual-activation design: one is Fe⁺ response, triggering spirolactam ring-opening to form xanthine structures, resulting in ≥ 1000-fold fluorescence enhancement with visible colorimetric transition (colorless→pink). Another is pH sensitivity, demonstrating protonation-dependent fluorescence amplification at the dC at site N3 (pK= 2.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.
A nanozyme-mediated cascade reaction system for fluorometric and colorimetric dual-mode detection of sarcosine (SA) was developed. The nanozymes (Zn-Glu@Hemin) were synthesized via a rapid self-assembly within 10 min at room temperature. Importantly, the Zn-Glu@Hemin exhibited strong peroxidase (POD)-mimicking activity, catalyzing the generation of hydroxyl radical (·OH) and superoxide anion (O) from hydrogen peroxide (HO), enhancing the fluorescence reaction of o-phenylenediamine (OPD) and the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB).
View Article and Find Full Text PDFMikrochim Acta
September 2025
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.
As the most dangerous mycotoxin, aflatoxin B1 (AFB1) has caused some food safety issues to be concerned. In this study, a simultaneous detection and degradation method towards AFB1 was established. Covalent-organic frameworks (COFs) were firstly synthesized and directly in situ deposited on the stainless-steel mesh, which would trigger the free-radical polymerization of acrylamide to form a hydrogel coating.
View Article and Find Full Text PDF