Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Artificial intelligence (AI) speeds up the drug development process and reduces its time, as well as the cost which is of enormous importance in outbreaks such as COVID-19. It uses a set of machine learning algorithms that collects the available data from resources, categorises, processes and develops novel learning methodologies. Virtual screening is a successful application of AI, which is used in screening huge drug-like databases and filtering to a small number of compounds. The brain's thinking of AI is its neural networking which uses techniques such as Convoluted Neural Network (CNN), Recursive Neural Network (RNN) or Generative Adversial Neural Network (GANN). The application ranges from small molecule drug discovery to the development of vaccines. In the present review article, we discussed various techniques of drug design, structure and ligand-based, pharmacokinetics and toxicity prediction using AI. The rapid phase of discovery is the need of the hour and AI is a targeted approach to achieve this.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612829666230428110542DOI Listing

Publication Analysis

Top Keywords

neural network
12
artificial intelligence
8
drug discovery
8
review artificial
4
intelligence approaches
4
approaches rational
4
rational approaches
4
drug
4
approaches drug
4
discovery artificial
4

Similar Publications

Brain activation for language and its relationship to cognitive and linguistic measures.

Cereb Cortex

August 2025

Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.

Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.

View Article and Find Full Text PDF

AI-enhanced predictive modeling for treatment duration and personalized treatment planning of cleft lip and palate therapy.

Int J Comput Assist Radiol Surg

September 2025

Division of Plastic and Reconstructive Surgery, Neonatal and Pediatric Craniofacial Airway Orthodontics, Department of Surgery, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA, 94394, USA.

Background: Alveolar molding plate treatment (AMPT) plays a critical role in preparing neonates with cleft lip and palate (CLP) for the first reconstruction surgery (cleft lip repair). However, determining the number of adjustments to AMPT in near-normalizing cleft deformity prior to surgery is a challenging task, often affecting the treatment duration. This study explores the use of machine learning in predicting treatment duration based on three-dimensional (3D) assessments of the pre-treatment maxillary cleft deformity as part of individualized treatment planning.

View Article and Find Full Text PDF

Drug-associated postpartum hemorrhage: a comprehensive disproportionality analysis based on the FAERS database.

Naunyn Schmiedebergs Arch Pharmacol

September 2025

Department of Pharmacy, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, #18 Daoshan Road, Fuzhou, Fujian, 350001, China.

Postpartum hemorrhage (PPH) is a life-threatening obstetric complication. We aimed to identify the drugs that associated with PPH based on the FDA Adverse Event Reporting System (FAERS) data, providing scientific evidence for targeted prevention of drug-related PPH risk factors. Data from 2004Q1 to 2025Q1 were extracted from FAERS, and disproportionality analysis was performed to identify potential drug signals.

View Article and Find Full Text PDF

Insights From Language-Trained Apes: Brain Network Plasticity and Communication.

Evol Anthropol

September 2025

Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, USA.

Language is central to the cognitive and sociocultural traits that distinguish humans, yet the evolutionary emergence of this capacity is far from fully understood. This review explores how the study of the brains of language-trained apes (LTAs) offers a unique and valuable opportunity to tease apart the relative contribution of evolved species differences, behavior, and environment in the emergence of complex communication abilities. For example, when raised in sociolinguistically rich and interactive environments, LTAs show communicative competencies that parallel aspects of early human language acquisition and exhibit altered neuroanatomy, including increased connectivity and laterization in regions associated with language.

View Article and Find Full Text PDF