Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic activities with arising impacts upon urban air quality. To date, these air quality changes associated with lockdown measures have typically been assessed using limited city-level regulatory monitoring data, however, low-cost air quality sensors provide capabilities to assess changes across multiple locations at higher spatial-temporal resolution, thereby generating insights relevant for future air quality interventions. The aim of this study was to utilise high-spatial resolution air quality information utilising data arising from a validated (using a random forest field calibration) network of 15 low-cost air quality sensors within Oxford, UK to monitor the impacts of multiple COVID-19 public heath restrictions upon particulate matter concentrations (PM, PM) from January 2020 to September 2021. Measurements of PM and PM particle size fractions both within and between site locations are compared to a pre-pandemic related public health restrictions baseline. While average peak concentrations of PM and PM were reduced by 9-10 μg/m below typical peak levels experienced in recent years, mean daily PM and PM concentrations were only ∼1 μg/m lower and there was marked temporal (as restrictions were added and removed) and spatial variability (across the 15-sensor network) in these observations. Across the 15-sensor network we observed a small local impact from traffic related emission sources upon particle concentrations near traffic-oriented sensors with higher average and peak concentrations as well as greater dynamic range, compared to more intermediate and background orientated sensor locations. The greater dynamic range in concentrations is indicative of exposure to more variable emission sources, such as road transport emissions. Our findings highlight the great potential for low-cost sensor technology to identify highly localised changes in pollutant concentrations as a consequence of changes in behaviour (in this case influenced by COVID-19 restrictions), generating insights into non-traffic contributions to PM emissions in this setting. It is evident that additional non-traffic related measures would be required in Oxford to reduce the PM and PM levels to within WHO health-based guidelines and to achieve compliance with PM targets developed under the Environment Act 2021.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10121078PMC
http://dx.doi.org/10.1016/j.buildenv.2023.110330DOI Listing

Publication Analysis

Top Keywords

air quality
24
covid-19 public
8
public health
8
health restrictions
8
restrictions particulate
8
particulate matter
8
low-cost sensor
8
low-cost air
8
quality sensors
8
generating insights
8

Similar Publications

The Expanded Regulatory Significance of Saharan Dust Plumes in the United States.

Environ Sci Technol

September 2025

Baton Rouge Complex, ExxonMobil, Baton Rouge, 5955 Scenic Hwy, Louisiana 70805, United States.

Given the recent reduction in the U.S. National Ambient Air Quality Standard (NAAQS) for annual PM from 12 to 9 μg m, the contribution of exceptional, though natural, particulate transport events has assumed greater regulatory relevance.

View Article and Find Full Text PDF

Background: Sarcopenia is associated with cardiovascular diseases (CVDs). However, whether changes in sarcopenia status affect CVD risk remains unclear. In addition, how indoor fuel use impacts the sarcopenia transition process is less well studied.

View Article and Find Full Text PDF

Engineering of Core-Shell Pd/SSZ-13@AlO Zeolite: Unlocking Superior NO Adsorption and Chemical Durability.

Environ Sci Technol

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Pd-zeolites are promising passive NO adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core-shell Pd/SSZ-13@AlO composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous AlO shell.

View Article and Find Full Text PDF

The increasing concern over environmental pollution from brake dust and the adverse impacts of conventional brake pad materials, such as metallic, semi-metallic, and ceramic composites, has prompted the exploration of more sustainable alternatives. Traditional brake pads release harmful non-exhaust emissions that contribute to air pollution and wear down quickly, posing both environmental and operational challenges. This study investigates the development and performance evaluation of polymer friction composites enhanced with natural friction modifiers sourced from agricultural waste materials like walnut shell, coconut shell, and groundnut shell powders.

View Article and Find Full Text PDF