Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The goal of present study is to explore how the size and functionalization of graphene quantum dots (GQDs) affect their sensing capabilities. Specifically, we investigated the adsorption of SO, SOF, SOF, and SF on GQDs that were functionalized with -CH, -COCH, and -NH. We used density functional theory to analyse the electronic properties of these functionalized GQDs and found that the functionalization significantly altered their electronic properties. For example, the B3LYP H-L gap of pristine triangulene was 3.9eV, while the H-L gap of functionalized triangulene ranged from 2.8 eV to 3.6 eV (using the B3LYP functional). Our results indicate that -NH functionalized phenalenyl and triangulene provide strong interaction with SO, with adsorption energies of -0.429 eV and -0.427 eV, respectively. These adsorption properties exhibit physisorption, leading to high gas sensitivity and superior recovery time. The findings of this study provide new insights into the potential use of GQDs for detecting the decomposed constituents of sulfur hexafluoride, which can be beneficial for assessing the operation status of SF insulated devices. Overall, our calculations suggest that functionalized GQDs can be employed in gas insulated systems for partial discharge detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130882PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15388DOI Listing

Publication Analysis

Top Keywords

graphene quantum
8
quantum dots
8
sulfur hexafluoride
8
electronic properties
8
functionalized gqds
8
h-l gap
8
gqds
5
functionalized
5
non-kekulé triangular
4
triangular graphene
4

Similar Publications

A theoretical study on doping Pd-like superatoms into defective graphene quantum dots: an efficient strategy to design single superatom catalysts for the Suzuki reaction.

Nanoscale

September 2025

Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China.

The rational design of non-precious metal catalysts as a replacement for Pd is of great importance for catalyzing various important chemical reactions. To realize this purpose, the palladium-like superatom NbN was doped into a defective graphene quantum dot (GQD) model with a double-vacancy site to design a novel single superatom catalyst, namely, NbN@GQD, based on density functional theory (DFT), and its catalytic activity for the Suzuki reaction was theoretically investigated. Our results reveal that this designed catalyst exhibits satisfactory activity with a small rate-limiting energy barrier of 25.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.

View Article and Find Full Text PDF

Vertically Stacked Boron Nitride/Graphene Heterostructure for Tunable Antiresonant Hollow-Core Fiber.

J Am Chem Soc

September 2025

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Incorporating atomically thin two-dimensional (2D) materials with optical fibers expands their potential for optoelectronic applications. Recent advancements in chemical vapor deposition have enabled the batch production of these hybrid fibers, paving the way for practical implementation. However, their functionality remains constrained by the integration of a single 2D material, restricting their versatile performance.

View Article and Find Full Text PDF

Carbon-based nanoparticles possess distinctive chemical, physical, and biological characteristics that render them suitable for biomedical uses. This paper reviews recent advancements in carbon-based nanomaterial (CBs) synthesis methods, emphasizing the importance of careful modification for biomedical uses, particularly in the passivation of drugs and chemicals on their surfaces. This review article examines information from 2021-2024 regarding carbon-based nanoparticles and the biomedical uses of graphene, fullerene, carbon nanotubes, nano horns, nanodiamonds, quantum dots, and graphene oxide.

View Article and Find Full Text PDF

Technologies and emerging trends in wearable biosensing.

Prog Mol Biol Transl Sci

September 2025

School of Applied Sciences and Technology, Gujarat Technological University, Gujarat, India. Electronic address:

This chapter examines advancements and future trajectories in wearable biosensing technologies, a multidisciplinary field encompassing healthcare, materials science, and information technology. Wearable biosensors are revolutionizing real-time physiological and biochemical monitoring with applications in personalized health monitoring, disease diagnosis, fitness, and therapeutic interventions. In addition to Internet of Things (IoT) and wireless connectivity technologies such as Bluetooth Low Energy (BLE) and 5G, which facilitate transparent remote monitoring and data exchange, other notable innovations such as machine learning and artificial intelligence enhance real-time processing of data, predictive analytics, and personalized healthcare solutions.

View Article and Find Full Text PDF